Copyright (c) 2014 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Effect of Component on Performance of Titania-Supported Selective Catalytic Reduction Denitrification Catalyst
Corresponding Author(s) : Shien Hui
Asian Journal of Chemistry,
Vol. 26 No. 19 (2014): Vol 26 Issue 19
Abstract
Selective catalytic reduction of nitrogen oxides remains as a widely used technology scheme for reducing NOx in the flue gas from stationary sources. Investigation of the influence of composition on the performance of selective catalytic reduction flue gas denitrification (DeNOx) catalyst has great significance as catalyst technology is the core of the selective catalytic reduction process. In this research, the DeNOx activity and selectivity of different titania-supported catalysts were tested in a small-scale experimental system. Titanium dioxide, tungsten oxide and molybdenum oxide all had denitrification effect, but the activity of these spices was low and activation temperature was high. The deposition of sulfate radical led to an increase in the NH3 adsorption but only slightly in catalytic activity. Higher vanadium loading increased the DeNOx activity of titania-supported vanadia catalyst and lowered the activation temperature. However, more N2O was observed with the increasing of vanadium which showed that the selectivity decreased. Catalysts supported on different species of titanium dioxide had certain differences in DeNOx performance. FeSO4/TiO2 was a good alternative denitration catalyst with a high DeNOx efficiency and in the temperature range of 330-420 °C, the NO conversion rate reached 93.56-99.25 % under the topical testing condition with a FeSO4 loading of 16 (wt.) %.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S. Eswaran and H.G. Stenger, Fuel Process. Technol., 89, 1153 (2008); doi:10.1016/j.fuproc.2008.05.007.
- D.E. Doronkin, S. Fogel, S. Tamm, L. Olsson, T.S. Khan, T. Bligaard, P. Gabrielsson and S. Dahl, Appl. Catal. B, 113-114, 228 (2012); doi:10.1016/j.apcatb.2011.11.042.
- I. Malpartida, O. Marie, P. Bazin, M. Daturi and X. Jeandel, Appl. Catal. B, 113-114, 52 (2012); doi:10.1016/j.apcatb.2011.11.023.
- M.L.M. Oliveira, C.M. Silva, R. Moreno-Tost, T.L. Farias, A. Jiménez-López and E. Rodríguez-Castellón, Energy Convers. Manage., 52, 2945 (2011); doi:10.1016/j.enconman.2011.02.025.
- X.Y. Shi, F.D. Liu, L.J. Xie, W.P. Shan and H. He, Environ. Sci. Technol., 47, 3293 (2013); doi:10.1021/es304421v.
- F. Gao, E.D. Walter, E.M. Karp, J.Y. Luo, R.G. Tonkyn, J.H. Kwak, J. Szanyi and C.H. Peden, J. Catal., 300, 20 (2013); doi:10.1016/j.jcat.2012.12.020.
- H.F. Huang, L.L. Jin, H.F. Lu, H. Yu and Y.J. Chen, Catal. Commun., 34, 1 (2013); doi:10.1016/j.catcom.2013.01.001.
- G.T. Went, Studies of Supported Vanadium Oxide Catalysts for the Selective Catalytic Reduction of Nitrogen Oxides, University of California, Berkeley, California, United States (1991).
- G.L. Bauerle, S.C. Wu and K. Nobe, Ind. Eng. Chem. Prod. Res. Dev., 17, 117 (1978); doi:10.1021/i360066a006.
- F. Nakajima and I. Hamada, Catal. Today, 29, 109 (1996); doi:10.1016/0920-5861(95)00288-X.
- T. Shikada, K. Fujimoto, T. Kunugi, H. Tominaga, S. Kaneko and Y. Kubo, Ind. Eng. Chem. Prod. Res. Dev., 20, 91 (1981); doi:10.1021/i300001a009.
- I.M. Pearson, H. Ryu, W.C. Wong and K. Nobe, Ind. Eng. Chem. Prod. Res. Dev., 22, 381 (1983); doi:10.1021/i300010a042.
- H. Bosch and F. Janssen, Preface. Catal. Today, 2, v (1988); doi:10.1016/0920-5861(88)80001-4.
- H. Bosch and F. Janssen, Catal. Today, 2, 403 (1988); doi:10.1016/0920-5861(88)80001-4.
- V.I. Pârvulescu, P. Grange and B. Delmon, Catal. Today, 46, 233 (1998); doi:10.1016/S0920-5861(98)00399-X.
- M. Kobayashi and K. Miyoshi, Appl. Catal. B, 72, 253 (2007); doi:10.1016/j.apcatb.2006.11.007.
- K. Bourikas, C. Fountzoula and C. Kordulis, Langmuir, 20, 10663 (2004); doi:10.1021/la049050y.
- L. Lietti, J.L. Alemany, P. Forzatti, G. Busca, G. Ramis, E. Giamello and F. Bregani, Catal. Today, 29, 143 (1996); doi:10.1016/0920-5861(95)00250-2.
- S. Bosio, A. Ravella, G.B. Saracco and G. Genon, Ind. Eng. Chem. Process Des. Dev., 24, 149 (1985); doi:10.1021/i200028a026.
- R.Q. Long and R.T. Yang, J. Catal., 194, 80 (2000); doi:10.1006/jcat.2000.2935.
- R.Q. Long and R.T. Yang, J. Catal., 207, 158 (2002); doi:10.1006/jcat.2002.3545.
- M.S. Kumar, M. Schwidder, W. Grunert and A. Brückner, J. Catal., 227, 384 (2004); doi:10.1016/j.jcat.2004.08.003.
- J.P. Chen and R.T. Yang, J. Catal., 139, 277 (1993); doi:10.1006/jcat.1993.1023.
- S.T. Choo, I.-S. Nam, S.-W. Ham and J.-B. Lee, Korean J. Chem. Eng., 20, 273 (2003); doi:10.1007/BF02697240.
- T. Yamaguchi, T. Jin and K. Tanabe, J. Phys. Chem., 90, 3148 (1986); doi:10.1021/j100405a022.
- T. Jin, M. Machida, T. Yamaguchi and K. Tanabe, Inorg. Chem., 23, 4396 (1984); doi:10.1021/ic00193a063.
- T. Jin, T. Yamaguchi and K. Tanabe, J. Phys. Chem., 90, 4794 (1986); doi:10.1021/j100411a017.
References
S. Eswaran and H.G. Stenger, Fuel Process. Technol., 89, 1153 (2008); doi:10.1016/j.fuproc.2008.05.007.
D.E. Doronkin, S. Fogel, S. Tamm, L. Olsson, T.S. Khan, T. Bligaard, P. Gabrielsson and S. Dahl, Appl. Catal. B, 113-114, 228 (2012); doi:10.1016/j.apcatb.2011.11.042.
I. Malpartida, O. Marie, P. Bazin, M. Daturi and X. Jeandel, Appl. Catal. B, 113-114, 52 (2012); doi:10.1016/j.apcatb.2011.11.023.
M.L.M. Oliveira, C.M. Silva, R. Moreno-Tost, T.L. Farias, A. Jiménez-López and E. Rodríguez-Castellón, Energy Convers. Manage., 52, 2945 (2011); doi:10.1016/j.enconman.2011.02.025.
X.Y. Shi, F.D. Liu, L.J. Xie, W.P. Shan and H. He, Environ. Sci. Technol., 47, 3293 (2013); doi:10.1021/es304421v.
F. Gao, E.D. Walter, E.M. Karp, J.Y. Luo, R.G. Tonkyn, J.H. Kwak, J. Szanyi and C.H. Peden, J. Catal., 300, 20 (2013); doi:10.1016/j.jcat.2012.12.020.
H.F. Huang, L.L. Jin, H.F. Lu, H. Yu and Y.J. Chen, Catal. Commun., 34, 1 (2013); doi:10.1016/j.catcom.2013.01.001.
G.T. Went, Studies of Supported Vanadium Oxide Catalysts for the Selective Catalytic Reduction of Nitrogen Oxides, University of California, Berkeley, California, United States (1991).
G.L. Bauerle, S.C. Wu and K. Nobe, Ind. Eng. Chem. Prod. Res. Dev., 17, 117 (1978); doi:10.1021/i360066a006.
F. Nakajima and I. Hamada, Catal. Today, 29, 109 (1996); doi:10.1016/0920-5861(95)00288-X.
T. Shikada, K. Fujimoto, T. Kunugi, H. Tominaga, S. Kaneko and Y. Kubo, Ind. Eng. Chem. Prod. Res. Dev., 20, 91 (1981); doi:10.1021/i300001a009.
I.M. Pearson, H. Ryu, W.C. Wong and K. Nobe, Ind. Eng. Chem. Prod. Res. Dev., 22, 381 (1983); doi:10.1021/i300010a042.
H. Bosch and F. Janssen, Preface. Catal. Today, 2, v (1988); doi:10.1016/0920-5861(88)80001-4.
H. Bosch and F. Janssen, Catal. Today, 2, 403 (1988); doi:10.1016/0920-5861(88)80001-4.
V.I. Pârvulescu, P. Grange and B. Delmon, Catal. Today, 46, 233 (1998); doi:10.1016/S0920-5861(98)00399-X.
M. Kobayashi and K. Miyoshi, Appl. Catal. B, 72, 253 (2007); doi:10.1016/j.apcatb.2006.11.007.
K. Bourikas, C. Fountzoula and C. Kordulis, Langmuir, 20, 10663 (2004); doi:10.1021/la049050y.
L. Lietti, J.L. Alemany, P. Forzatti, G. Busca, G. Ramis, E. Giamello and F. Bregani, Catal. Today, 29, 143 (1996); doi:10.1016/0920-5861(95)00250-2.
S. Bosio, A. Ravella, G.B. Saracco and G. Genon, Ind. Eng. Chem. Process Des. Dev., 24, 149 (1985); doi:10.1021/i200028a026.
R.Q. Long and R.T. Yang, J. Catal., 194, 80 (2000); doi:10.1006/jcat.2000.2935.
R.Q. Long and R.T. Yang, J. Catal., 207, 158 (2002); doi:10.1006/jcat.2002.3545.
M.S. Kumar, M. Schwidder, W. Grunert and A. Brückner, J. Catal., 227, 384 (2004); doi:10.1016/j.jcat.2004.08.003.
J.P. Chen and R.T. Yang, J. Catal., 139, 277 (1993); doi:10.1006/jcat.1993.1023.
S.T. Choo, I.-S. Nam, S.-W. Ham and J.-B. Lee, Korean J. Chem. Eng., 20, 273 (2003); doi:10.1007/BF02697240.
T. Yamaguchi, T. Jin and K. Tanabe, J. Phys. Chem., 90, 3148 (1986); doi:10.1021/j100405a022.
T. Jin, M. Machida, T. Yamaguchi and K. Tanabe, Inorg. Chem., 23, 4396 (1984); doi:10.1021/ic00193a063.
T. Jin, T. Yamaguchi and K. Tanabe, J. Phys. Chem., 90, 4794 (1986); doi:10.1021/j100411a017.