Copyright (c) 2014 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Ultrasensitive Impedimetric Lectin Biosensor with Efficient Antifouling Properties Applied in Determination of a-Fetoprotein on Mixed Self-Assembled Monolayer on Gold
Corresponding Author(s) : Haiying Yang
Asian Journal of Chemistry,
Vol. 26 No. 19 (2014): Vol 26 Issue 19
Abstract
A sensitive and attractive antifouling impedimetric lectin biosensor for the determination of a-fetoprotein in human serum samples was developed. The biosensor was fabricated by co-assembling 11-mercapto-undecanoic acid for covalent immobilization of wheat-germ agglutinin and dithiothreitol to resist nonspecific interactions on the surface of gold electrode. In the measurement of a-fetoprotein, the change in interfacial electron transfer resistance of biosensor was monitored using a ferri/ferrocyanide redox couple. Owing to the specific recognition of wheat-germ agglutinin with N-glycan on a-fetoprotein, the increase in the electron transfer resistance was linearly proportional to the logarithm of the concentration of a-fetoprotein in the range from 1.0 × 10-11 to 8 × 10-10 g mL-1 and a detection limit of 9 × 10-12 g mL-1 a-fetoprotein was achieved. The fabricated biosensor allowed direct quantification of extrinsic a-fetoprotein in serum samples. This work provides a promising strategy for clinical application with impressive sensitivity and antifouling characteristics.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- N.L. Anderson and N.G. Anderson, Mol. Cell. Proteomics, 1, 845 (2002); doi:10.1074/mcp.R200007-MCP200.
- G.E. Ritchie, B.E. Moffatt, R.B. Sim, B.P. Morgan, R.A. Dwek and P.M. Rudd, Chem. Rev., 102, 305 (2002); doi:10.1021/cr990294a.
- R. Kannagi, M. Izawa, T. Koike, K. Miyazaki and N. Kimura, Cancer Sci., 95, 377 (2004); doi:10.1111/j.1349-7006.2004.tb03219.x.
- Y. Li, H. Qi, Q. Gao and C. Zhang, Biosens. Bioelectron., 26, 2733 (2011); doi:10.1016/j.bios.2010.09.048.
- Z.Y. Guo, T.T. Hao, J. Duan, S. Wang and D.Y. Wei, Talanta, 89, 27 (2012); doi:10.1016/j.talanta.2011.11.017.
- N. Gan, J.G. Hou, F.T. Hu, Y.T. Cao, T.H. Li, L. Zheng and J. Wang, Int. J. Electrochem. Sci., 6, 5146 (2011).
- L. Wang and X.X. Gan, Mikrochim. Acta, 164, 231 (2009); doi:10.1007/s00604-008-0059-5.
- H.L. Qi, C. Ling, Q.Y. Ma, Q. Gao and C.X. Zhang, Analyst, 137, 393 (2011); doi:10.1039/c1an15698e.
- M. Giannetto, L. Elviri, M. Careri, A. Mangia and G. Mori, Biosens. Bioelectron., 26, 2232 (2011); doi:10.1016/j.bios.2010.09.040.
- D. Du, Z.X. Zou, Y. Shin, J. Wang, H. Wu, M.H. Engelhard, J. Liu, I.A. Aksay and Y.H. Lin, Anal. Chem., 82, 2989 (2010); doi:10.1021/ac100036p.
- J. Tang, B.L. Su, D.P. Tang and G.N. Chen, Biosens. Bioelectron., 25, 2657 (2010); doi:10.1016/j.bios.2010.04.039.
- J. Tang, D.P. Tang, B.L. Su, Q.F. Li, B. Qiu and G.N. Chen, Analyst, 136, 3869 (2011); doi:10.1039/c1an15443e.
- Y.Q. Miao and J.G. Guan, Anal. Lett., 37, 1053 (2004); doi:10.1081/AL-120034052.
- Y.F. Chang, R.C. Chen, Y.J. Lee, S.C. Chao, L.C. Su, Y.C. Li and C. Chou, Biosens. Bioelectron., 24, 1610 (2009); doi:10.1016/j.bios.2008.08.019.
- C.K. O’Sullivan, Anal. Bioanal. Chem., 372, 44 (2002); doi:10.1007/s00216-001-1189-3.
- H.L. Sharon, Glycobiology, 14, 53 (2004); doi:10.1093/glycob/cwh122.
- H. Tateno, S. Nakamura-Tsuruta and J. Hirabayashi, Glycobiology, 19, 527 (2009); doi:10.1093/glycob/cwp016.
- D. Clark and L. Mao, Dis. Markers, 33, 1 (2012); doi:10.1155/2012/308738.
- R.R. Drake, E.E. Schwegler, G. Malik, J. Diaz, T. Block, A. Mehta and O.J. Semmes, Mol. Cell. Proteomics, 5, 1957 (2006); doi:10.1074/mcp.M600176-MCP200.
- S. Chen, T. LaRoche, D. Hamelinck, D. Bergsma, D. Brenner, D. Simeone, R.E. Brand and B. Haab Brian, Nat. Methods, 4, 437 (2007); doi:10.1038/nmeth1035.
- L. Ding, W. Cheng, X.J. Wang, Y.D. Xue, J.P. Lei, Y.B. Yin and H.X. Ju, Chem. Commun., 45, 7161 (2009); doi:10.1039/b918008g.
- J.T. La Belle, J.Q. Gerlach, S. Svarovsky and L. Joshi, Anal. Chem., 79, 6959 (2007); doi:10.1021/ac070651e.
- Y. Li, S. Tao, G.S. Bova, A.Y. Liu, D.W. Chan, H. Zhu and H. Zhang, Anal. Chem., 83, 8509 (2011); doi:10.1021/ac201452f.
- X. Li, L. Shen, D. Zhang, H. Qi, Q. Gao, F. Ma and C. Zhang, Biosens. Bioelectron., 23, 1624 (2008); doi:10.1016/j.bios.2008.01.029.
- D.L.M. Oliveira, M.L. Nogueira, M.T.S. Correia, L.C.B.B. Coelho and C.A.S. Andrade, Sens. Actuators B, 155, 789 (2011); doi:10.1016/j.snb.2011.01.049.
- T. Komatsu, Nanoscale, 4, 1910 (2012); doi:10.1039/c1nr11224d.
- A. Bogomolova, E. Komarova, K. Reber, T. Gerasimov, O. Yavuz, S. Bhatt and M. Aldissi, Anal. Chem., 81, 3944 (2009); doi:10.1021/ac9002358.
- A. Hucknall, S. Rangarajan and A. Chilkoti, Adv. Mater., 21, 2441 (2009); doi:10.1002/adma.200900383.
- H. Qi, L. Shangguan, C. Li, X. Li, Q. Gao and C. Zhang, Biosens. Bioelectron., 39, 324 (2013); doi:10.1016/j.bios.2012.07.040.
- B.T. Houseman and M. Mrksich, Angew. Chem. Int. Ed., 38, 782 (1999); doi:10.1002/(SICI)1521-3773(19990315)38:6<782::AID-ANIE782>3.0.CO;2-N.
- F. Frederix, K. Bonroy, W. Laureyn, G. Reekmans, A. Campitelli, W. Dehaen and G. Maes, Langmuir, 19, 4351 (2003); doi:10.1021/la026908f.
- L. Huang, G. Reekmans, D. Saerens, J.-M. Friedt, F. Frederix, L. Francis, S. Muyldermans, A. Campitelli and C.V. Hoof, Biosens. Bioelectron., 21, 483 (2005); doi:10.1016/j.bios.2004.11.016.
- J.T. Gallagher, Biosci. Rep., 4, 621 (1984); doi:10.1007/BF01121015.
- P. Chen, Y.K. Liu, X.N. Kang, L. Sun, P.Y. Yang and Z.Y. Tang, J. Cancer Res. Clin. Oncol., 134, 851 (2008); doi:10.1007/s00432-008-0357-7.
- A.R. MacDairmid, M.C. Gallagher and J.T. Banks, J. Phys. Chem. B, 107, 9789 (2003); doi:10.1021/jp034331k.
- E.A. Smith, W.D. Thomas, L.L. Kiessling and R.M. Corn, J. Am. Chem. Soc., 125, 6140 (2003); doi:10.1021/ja034165u.
- X. Jiang, A. Housni, G. Gody, P. Boullanger, M. Charreyre, T. Delair and R. Narain, Bioconjug. Chem., 21, 521 (2010); doi:10.1021/bc900431p.
- F. St. Michael, E. Vinogradov, C.Q. Wenzel, B. McIntosh, J. Li, J.C. Hoe, J.C. Richards and A.D. Cox, Glycobiology, 19, 633 (2009); doi:10.1093/glycob/cwp117.
- S. Szunerits, J. Niedziołka-Jonsson, R. Boukherroub, P. Woisel, J.S. Baumann and A. Siriwardena, Anal. Chem., 82, 8203 (2010); doi:10.1021/ac1016387.
- T. Fukuda, S. Onogi and Y. Miura, Thin Solid Films, 518, 880 (2009); doi:10.1016/j.tsf.2009.07.109.
- T. Bertok, L. Klukova, A. Sediva, P. Kasak, V. Semak, M. Micusik, M. Omastova, L. Chovanova, M. Vlcek, R. Imrich, A. Vikartovska and J. Tkac, Anal. Chem., 85, 7324 (2013); doi:10.1021/ac401281t.
- M. Song, Y. Zhang, T. Li, Z. Wang, J. Yin and H. Wang, J. Chromatogr. A, 1216, 873 (2009); doi:10.1016/j.chroma.2008.11.085.
References
N.L. Anderson and N.G. Anderson, Mol. Cell. Proteomics, 1, 845 (2002); doi:10.1074/mcp.R200007-MCP200.
G.E. Ritchie, B.E. Moffatt, R.B. Sim, B.P. Morgan, R.A. Dwek and P.M. Rudd, Chem. Rev., 102, 305 (2002); doi:10.1021/cr990294a.
R. Kannagi, M. Izawa, T. Koike, K. Miyazaki and N. Kimura, Cancer Sci., 95, 377 (2004); doi:10.1111/j.1349-7006.2004.tb03219.x.
Y. Li, H. Qi, Q. Gao and C. Zhang, Biosens. Bioelectron., 26, 2733 (2011); doi:10.1016/j.bios.2010.09.048.
Z.Y. Guo, T.T. Hao, J. Duan, S. Wang and D.Y. Wei, Talanta, 89, 27 (2012); doi:10.1016/j.talanta.2011.11.017.
N. Gan, J.G. Hou, F.T. Hu, Y.T. Cao, T.H. Li, L. Zheng and J. Wang, Int. J. Electrochem. Sci., 6, 5146 (2011).
L. Wang and X.X. Gan, Mikrochim. Acta, 164, 231 (2009); doi:10.1007/s00604-008-0059-5.
H.L. Qi, C. Ling, Q.Y. Ma, Q. Gao and C.X. Zhang, Analyst, 137, 393 (2011); doi:10.1039/c1an15698e.
M. Giannetto, L. Elviri, M. Careri, A. Mangia and G. Mori, Biosens. Bioelectron., 26, 2232 (2011); doi:10.1016/j.bios.2010.09.040.
D. Du, Z.X. Zou, Y. Shin, J. Wang, H. Wu, M.H. Engelhard, J. Liu, I.A. Aksay and Y.H. Lin, Anal. Chem., 82, 2989 (2010); doi:10.1021/ac100036p.
J. Tang, B.L. Su, D.P. Tang and G.N. Chen, Biosens. Bioelectron., 25, 2657 (2010); doi:10.1016/j.bios.2010.04.039.
J. Tang, D.P. Tang, B.L. Su, Q.F. Li, B. Qiu and G.N. Chen, Analyst, 136, 3869 (2011); doi:10.1039/c1an15443e.
Y.Q. Miao and J.G. Guan, Anal. Lett., 37, 1053 (2004); doi:10.1081/AL-120034052.
Y.F. Chang, R.C. Chen, Y.J. Lee, S.C. Chao, L.C. Su, Y.C. Li and C. Chou, Biosens. Bioelectron., 24, 1610 (2009); doi:10.1016/j.bios.2008.08.019.
C.K. O’Sullivan, Anal. Bioanal. Chem., 372, 44 (2002); doi:10.1007/s00216-001-1189-3.
H.L. Sharon, Glycobiology, 14, 53 (2004); doi:10.1093/glycob/cwh122.
H. Tateno, S. Nakamura-Tsuruta and J. Hirabayashi, Glycobiology, 19, 527 (2009); doi:10.1093/glycob/cwp016.
D. Clark and L. Mao, Dis. Markers, 33, 1 (2012); doi:10.1155/2012/308738.
R.R. Drake, E.E. Schwegler, G. Malik, J. Diaz, T. Block, A. Mehta and O.J. Semmes, Mol. Cell. Proteomics, 5, 1957 (2006); doi:10.1074/mcp.M600176-MCP200.
S. Chen, T. LaRoche, D. Hamelinck, D. Bergsma, D. Brenner, D. Simeone, R.E. Brand and B. Haab Brian, Nat. Methods, 4, 437 (2007); doi:10.1038/nmeth1035.
L. Ding, W. Cheng, X.J. Wang, Y.D. Xue, J.P. Lei, Y.B. Yin and H.X. Ju, Chem. Commun., 45, 7161 (2009); doi:10.1039/b918008g.
J.T. La Belle, J.Q. Gerlach, S. Svarovsky and L. Joshi, Anal. Chem., 79, 6959 (2007); doi:10.1021/ac070651e.
Y. Li, S. Tao, G.S. Bova, A.Y. Liu, D.W. Chan, H. Zhu and H. Zhang, Anal. Chem., 83, 8509 (2011); doi:10.1021/ac201452f.
X. Li, L. Shen, D. Zhang, H. Qi, Q. Gao, F. Ma and C. Zhang, Biosens. Bioelectron., 23, 1624 (2008); doi:10.1016/j.bios.2008.01.029.
D.L.M. Oliveira, M.L. Nogueira, M.T.S. Correia, L.C.B.B. Coelho and C.A.S. Andrade, Sens. Actuators B, 155, 789 (2011); doi:10.1016/j.snb.2011.01.049.
T. Komatsu, Nanoscale, 4, 1910 (2012); doi:10.1039/c1nr11224d.
A. Bogomolova, E. Komarova, K. Reber, T. Gerasimov, O. Yavuz, S. Bhatt and M. Aldissi, Anal. Chem., 81, 3944 (2009); doi:10.1021/ac9002358.
A. Hucknall, S. Rangarajan and A. Chilkoti, Adv. Mater., 21, 2441 (2009); doi:10.1002/adma.200900383.
H. Qi, L. Shangguan, C. Li, X. Li, Q. Gao and C. Zhang, Biosens. Bioelectron., 39, 324 (2013); doi:10.1016/j.bios.2012.07.040.
B.T. Houseman and M. Mrksich, Angew. Chem. Int. Ed., 38, 782 (1999); doi:10.1002/(SICI)1521-3773(19990315)38:6<782::AID-ANIE782>3.0.CO;2-N.
F. Frederix, K. Bonroy, W. Laureyn, G. Reekmans, A. Campitelli, W. Dehaen and G. Maes, Langmuir, 19, 4351 (2003); doi:10.1021/la026908f.
L. Huang, G. Reekmans, D. Saerens, J.-M. Friedt, F. Frederix, L. Francis, S. Muyldermans, A. Campitelli and C.V. Hoof, Biosens. Bioelectron., 21, 483 (2005); doi:10.1016/j.bios.2004.11.016.
J.T. Gallagher, Biosci. Rep., 4, 621 (1984); doi:10.1007/BF01121015.
P. Chen, Y.K. Liu, X.N. Kang, L. Sun, P.Y. Yang and Z.Y. Tang, J. Cancer Res. Clin. Oncol., 134, 851 (2008); doi:10.1007/s00432-008-0357-7.
A.R. MacDairmid, M.C. Gallagher and J.T. Banks, J. Phys. Chem. B, 107, 9789 (2003); doi:10.1021/jp034331k.
E.A. Smith, W.D. Thomas, L.L. Kiessling and R.M. Corn, J. Am. Chem. Soc., 125, 6140 (2003); doi:10.1021/ja034165u.
X. Jiang, A. Housni, G. Gody, P. Boullanger, M. Charreyre, T. Delair and R. Narain, Bioconjug. Chem., 21, 521 (2010); doi:10.1021/bc900431p.
F. St. Michael, E. Vinogradov, C.Q. Wenzel, B. McIntosh, J. Li, J.C. Hoe, J.C. Richards and A.D. Cox, Glycobiology, 19, 633 (2009); doi:10.1093/glycob/cwp117.
S. Szunerits, J. Niedziołka-Jonsson, R. Boukherroub, P. Woisel, J.S. Baumann and A. Siriwardena, Anal. Chem., 82, 8203 (2010); doi:10.1021/ac1016387.
T. Fukuda, S. Onogi and Y. Miura, Thin Solid Films, 518, 880 (2009); doi:10.1016/j.tsf.2009.07.109.
T. Bertok, L. Klukova, A. Sediva, P. Kasak, V. Semak, M. Micusik, M. Omastova, L. Chovanova, M. Vlcek, R. Imrich, A. Vikartovska and J. Tkac, Anal. Chem., 85, 7324 (2013); doi:10.1021/ac401281t.
M. Song, Y. Zhang, T. Li, Z. Wang, J. Yin and H. Wang, J. Chromatogr. A, 1216, 873 (2009); doi:10.1016/j.chroma.2008.11.085.