Copyright (c) 2014 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
DFT Studies on Structure-Property Relationship of (I2AlN3)n (n = 1-4) Clusters
Corresponding Author(s) : Qiying Xia
Asian Journal of Chemistry,
Vol. 26 No. 19 (2014): Vol 26 Issue 19
Abstract
The clusters (I2AlN3)n (n = 1-4) were designed and investigated using density functional theory in order to find out the comprehensive relationships between structures and properties. The calculated results show that the Al-Na bonds form easily and Al-Al and Na-Na bonds are not found in the cyclic clusters (I2AlN3)n (n = 2-4). Trends in geometrical parameters with the oligomerization degree n are discussed. Frequency calculations are carried out on each optimized structure and IR spectra are discussed. Thermodynamic properties for the clusters (I2AlN3)n (n = 1-4) are linearly correlated with the oligomerization degree n as well as the temperature. Meanwhile, the dimerization, trimerization and tetramerization of the monomer I2AlN3 are exothermic and favorable at temperatures up to 600 K.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- T.W. Hashman and S.E. Pratsinis, J. Am. Ceram. Soc., 75, 920 (1992); doi:10.1111/j.1151-2916.1992.tb04161.x.
- A. Saxler, P. Kung, C.J. Sun, E. Bigan and M. Razeghi, Appl. Phys. Lett., 64, 339 (1994); doi:10.1063/1.111168.
- D.C. Boyd, R.T. Haasch, D.R. Mantell, R.K. Schulze, J.F. Evans and W.L. Gladfelter, Chem. Mater., 1, 119 (1989); doi:10.1021/cm00001a023.
- R.K. Schulze, D.C. Boyd, J.F. Evans and W.L. Gladfelter, J. Vac. Sci. Technol. A, 8, 2338 (1990); doi:10.1116/1.576760.
- J. Kouvetakis, J. McMurran, C. Steffek, T.L. Groy, J.L. Hubbard and L. Torrison, Main Group Met. Chem., 24, 77 (2001); doi:10.1515/MGMC.2001.24.2.77.
- J. McMurran, J. Kouvetakis and D.J. Smith, Appl. Phys. Lett., 74, 883 (1999); doi:10.1063/1.123398.
- J. McMurran, D. Dai, K. Balasubramanian, C. Steffek, J. Kouvetakis and J.L. Hubbard, Inorg. Chem., 37, 6638 (1998); doi:10.1021/ic981022d.
- J. McMurran, M. Todd, J. Kouvetakis and D.J. Smith, Appl. Phys. Lett., 69, 203 (1996); doi:10.1063/1.117372.
- K. Dehnicke and N. Krüger, Z. Anorg. Allg. Chem., 444, 71 (1978); doi:10.1002/zaac.19784440107.
- Q.Y. Xia, H.M. Xiao, X.H. Ju and X.D. Gong, J. Phys. Chem. A, 108, 2780 (2004); doi:10.1021/jp0310450.
- Q.Y. Xia, D.X. Ma, Q.F. Lin and W.W. Zhao, Struct. Chem., 23, 545 (2012); doi:10.1007/s11224-011-9902-0.
- A.Y. Timoshkin and H.F. Schaefer III, J. Phys. Chem. A, 114, 516 (2010); doi:10.1021/jp907410h.
- M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A. Montgomery, Jr., T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez and J.A. Pople, Gaussian, Inc., Wallingford CT, Gaussian, Inc.: Pittsburgh, PA (2004).
- A.D. Becke, J. Chem. Phys., 98, 5648 (1993); doi:10.1063/1.464913.
- Q.Y. Xia, Q.F. Lin and W.W. Zhao, J. Mol. Model., 18, 905 (2012); doi:10.1007/s00894-011-1126-0.
- Q.Y. Xia, D.X. Ma, W.W. Zhao and H.M. Xiao, Chin. J. Chem., 29, 1817 (2011); doi:10.1002/cjoc.201180319.
- M.J. Frisch, J.A. Pople and J.S. Binkley, J. Chem. Phys., 80, 3265 (1984); doi:10.1063/1.447079.
- P.J. Hay and W.R. Wadt, J. Chem. Phys., 82, 270 (1985); doi:10.1063/1.448799.
- A.P. Scott and L. Radom, J. Phys. Chem., 100, 16502 (1996); doi:10.1021/jp960976r.
References
T.W. Hashman and S.E. Pratsinis, J. Am. Ceram. Soc., 75, 920 (1992); doi:10.1111/j.1151-2916.1992.tb04161.x.
A. Saxler, P. Kung, C.J. Sun, E. Bigan and M. Razeghi, Appl. Phys. Lett., 64, 339 (1994); doi:10.1063/1.111168.
D.C. Boyd, R.T. Haasch, D.R. Mantell, R.K. Schulze, J.F. Evans and W.L. Gladfelter, Chem. Mater., 1, 119 (1989); doi:10.1021/cm00001a023.
R.K. Schulze, D.C. Boyd, J.F. Evans and W.L. Gladfelter, J. Vac. Sci. Technol. A, 8, 2338 (1990); doi:10.1116/1.576760.
J. Kouvetakis, J. McMurran, C. Steffek, T.L. Groy, J.L. Hubbard and L. Torrison, Main Group Met. Chem., 24, 77 (2001); doi:10.1515/MGMC.2001.24.2.77.
J. McMurran, J. Kouvetakis and D.J. Smith, Appl. Phys. Lett., 74, 883 (1999); doi:10.1063/1.123398.
J. McMurran, D. Dai, K. Balasubramanian, C. Steffek, J. Kouvetakis and J.L. Hubbard, Inorg. Chem., 37, 6638 (1998); doi:10.1021/ic981022d.
J. McMurran, M. Todd, J. Kouvetakis and D.J. Smith, Appl. Phys. Lett., 69, 203 (1996); doi:10.1063/1.117372.
K. Dehnicke and N. Krüger, Z. Anorg. Allg. Chem., 444, 71 (1978); doi:10.1002/zaac.19784440107.
Q.Y. Xia, H.M. Xiao, X.H. Ju and X.D. Gong, J. Phys. Chem. A, 108, 2780 (2004); doi:10.1021/jp0310450.
Q.Y. Xia, D.X. Ma, Q.F. Lin and W.W. Zhao, Struct. Chem., 23, 545 (2012); doi:10.1007/s11224-011-9902-0.
A.Y. Timoshkin and H.F. Schaefer III, J. Phys. Chem. A, 114, 516 (2010); doi:10.1021/jp907410h.
M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A. Montgomery, Jr., T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez and J.A. Pople, Gaussian, Inc., Wallingford CT, Gaussian, Inc.: Pittsburgh, PA (2004).
A.D. Becke, J. Chem. Phys., 98, 5648 (1993); doi:10.1063/1.464913.
Q.Y. Xia, Q.F. Lin and W.W. Zhao, J. Mol. Model., 18, 905 (2012); doi:10.1007/s00894-011-1126-0.
Q.Y. Xia, D.X. Ma, W.W. Zhao and H.M. Xiao, Chin. J. Chem., 29, 1817 (2011); doi:10.1002/cjoc.201180319.
M.J. Frisch, J.A. Pople and J.S. Binkley, J. Chem. Phys., 80, 3265 (1984); doi:10.1063/1.447079.
P.J. Hay and W.R. Wadt, J. Chem. Phys., 82, 270 (1985); doi:10.1063/1.448799.
A.P. Scott and L. Radom, J. Phys. Chem., 100, 16502 (1996); doi:10.1021/jp960976r.