Copyright (c) 2014 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Conformational Study of Kiwi Fruit (Actinidia chinensis Planch.) Seed Protein Isolates by Fluorescence Spectroscopy
Corresponding Author(s) : Jianjun Deng
Asian Journal of Chemistry,
Vol. 26 No. 19 (2014): Vol 26 Issue 19
Abstract
Kiwi fruit (Actinidia chinensis Planch.) seeds protein isolates (KSPI), a potential source of edible protein, are produced as solid wastes in food industry and remain underutilized yet. Kiwi fruit seed protein isolates had more proteins or peptides with low molecular weights, showing a better digestibility and the proportion of essential amino acids were better than that recommended by FAO/WHO. Fluorescence spectroscopy was used to investigate the conformational changes of KSPI with different environmental conditions including pH values, temperatures and denaturants. The conformation of KSPI changed significantly at pH 5 and the fluorescence intensity decreased greatly as the temperature increased. The denatured extent of the denaturants was sodium dodecyl sulfate (SDS) > urea > guanidine hydrochloride. These results provide theoretical basis for food manufacturing and indicate that KSPI as a potential ingredient could be used as a substitute for soy protein in food industries.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- V.R. Young and P.L. Pellett, Am. J. Clin. Nutr., 59, 1203S (1994).
- M. Lísa, M. Holcapek and M. Bohác, J. Agric. Food Chem., 57, 6888 (2009); doi:10.1021/jf901189u.
- K.K. Turoverov and I.M. Kuznetsova, J. Fluoresc., 13, 41 (2003); doi:10.1023/A:1022366816812.
- E.C.Y. Li-Chan, Adv. Exp. Med. Biol., 434, 5 (1998); doi:10.1007/978-1-4899-1925-0_2.
- S.W. Yin, C.H. Tang, X.Q. Yang and Q.B. Wen, J. Agric. Food Chem., 59, 241 (2011); doi:10.1021/jf1027608.
- K. Chattopadhyay, S. Saffarian, E.L. Elson and C. Frieden, Biophys. J., 88, 1413 (2005); doi:10.1529/biophysj.104.053199.
- G.P. Gorbenko, J. Fluoresc., 21, 945 (2011); doi:10.1007/s10895-010-0649-6.
- C.Y. Ma and V.R. Harwalkar, J. Food Sci., 53, 531 (1988); doi:10.1111/j.1365-2621.1988.tb07749.x.
- J. Domenech, J.M. Nieto and J. Ferrer, J. Mol. Catal. B, 61, 168 (2009); doi:10.1016/j.molcatb.2009.06.008.
- I. Pallarès, J. Vendrell, F.X. Avilés and S. Ventura, J. Mol. Biol., 342, 321 (2004); doi:10.1016/j.jmb.2004.06.089.
- A.P. Batista, C.A. Portugal, I. Sousa, J.G. Crespo and A. Raymundo, Int. J. Biol. Macromol., 36, 135 (2005); doi:10.1016/j.ijbiomac.2005.04.003.
- J.E. Kinsella and N. Melachouris, Crit. Rev. Food Sci. Nutr., 7, 219 (1976); doi:10.1080/10408397609527208.
- J. Yu, M. Ahmedna and I. Goktepe, Food Chem., 103, 121 (2007); doi:10.1016/j.foodchem.2006.08.012.
- U.K. Laemmli, Nature, 227, 680 (1970); doi:10.1038/227680a0.
- Y. Zhang, Z.D. Qi, D. Zheng, C.H. Li and Y. Liu, Biol. Trace Elem. Res., 130, 172 (2009); doi:10.1007/s12011-009-8322-0.
- M. Zhang, J. Gao and H. Yang, Cereal Chem., 86, 261 (2009); doi:10.1094/CCHEM-86-3-0261.
- J.M. Sanchez-Ruiz, Subcell. Biochem., 24, 133 (1995); doi:10.1007/978-1-4899-1727-0_6.
- G.E. Plum and K.J. Breslauer, Curr. Opin. Struct. Biol., 5, 682 (1995); doi:10.1016/0959-440X(95)80062-X.
- M.C. Stumpe and H. Grubmuller, J. Am. Chem. Soc., 129, 16126 (2007); doi:10.1021/ja076216j.
- E. Dufour, G.H. Hoa and T. Haertlé, Biochim. Biophys. Acta, 1206, 166 (1994); doi:10.1016/0167-4838(94)90204-6.
- I. Pallarés, J. Vendrell, F.X. Avilés and S. Ventura, J. Mol. Biol., 342, 321 (2004); doi:10.1016/j.jmb.2004.06.089.
- E.J. Guinn, L.M. Pegram, M.W. Capp, M.N. Pollock and M.T. Record, Proc. Natl. Acad. Sci. USA, 108, 16932 (2011); doi:10.1073/pnas.1109372108.
- C.N. Pace, Methods Enzymol., 131, 266 (1986); doi:10.1016/0076-6879(86)31045-0.
- J.A. Schellman, Biopolymers, 26, 549 (1987); doi:10.1002/bip.360260408.
- S.M. West, A.D. Guise and J.B. Chaudhuri, I Chem. E., 75, 53 (1997).
- P.E. Mason, G.W. Neilson, C.E. Dempsey, A.C. Barnes and J.M. Cruickshank, Proc. Natl. Acad. Sci. USA, 100, 4557 (2003); doi:10.1073/pnas.0735920100.
- K.K. Turoverov, V.V. Verkhusha, M.M. Shavlovsky, A.G. Biktashev, O.I. Povarova and I.M. Kuznetsova, Biochemistry, 41, 1014 (2002); doi:10.1021/bi015548c.
- S.D. Arntfield, E.D. Murray and M.A.H. Ismond, J. Agric. Food Chem., 38, 1335 (1990); doi:10.1021/jf00096a008.
- A. Das and C. Mukhopadhyay, J. Phys. Chem. B, 112, 7903 (2008); doi:10.1021/jp800370e.
- H.A. Scheraga and L. Mandelkern, J. Am. Chem. Soc., 75, 179 (1953); doi:10.1021/ja01097a047.
References
V.R. Young and P.L. Pellett, Am. J. Clin. Nutr., 59, 1203S (1994).
M. Lísa, M. Holcapek and M. Bohác, J. Agric. Food Chem., 57, 6888 (2009); doi:10.1021/jf901189u.
K.K. Turoverov and I.M. Kuznetsova, J. Fluoresc., 13, 41 (2003); doi:10.1023/A:1022366816812.
E.C.Y. Li-Chan, Adv. Exp. Med. Biol., 434, 5 (1998); doi:10.1007/978-1-4899-1925-0_2.
S.W. Yin, C.H. Tang, X.Q. Yang and Q.B. Wen, J. Agric. Food Chem., 59, 241 (2011); doi:10.1021/jf1027608.
K. Chattopadhyay, S. Saffarian, E.L. Elson and C. Frieden, Biophys. J., 88, 1413 (2005); doi:10.1529/biophysj.104.053199.
G.P. Gorbenko, J. Fluoresc., 21, 945 (2011); doi:10.1007/s10895-010-0649-6.
C.Y. Ma and V.R. Harwalkar, J. Food Sci., 53, 531 (1988); doi:10.1111/j.1365-2621.1988.tb07749.x.
J. Domenech, J.M. Nieto and J. Ferrer, J. Mol. Catal. B, 61, 168 (2009); doi:10.1016/j.molcatb.2009.06.008.
I. Pallarès, J. Vendrell, F.X. Avilés and S. Ventura, J. Mol. Biol., 342, 321 (2004); doi:10.1016/j.jmb.2004.06.089.
A.P. Batista, C.A. Portugal, I. Sousa, J.G. Crespo and A. Raymundo, Int. J. Biol. Macromol., 36, 135 (2005); doi:10.1016/j.ijbiomac.2005.04.003.
J.E. Kinsella and N. Melachouris, Crit. Rev. Food Sci. Nutr., 7, 219 (1976); doi:10.1080/10408397609527208.
J. Yu, M. Ahmedna and I. Goktepe, Food Chem., 103, 121 (2007); doi:10.1016/j.foodchem.2006.08.012.
U.K. Laemmli, Nature, 227, 680 (1970); doi:10.1038/227680a0.
Y. Zhang, Z.D. Qi, D. Zheng, C.H. Li and Y. Liu, Biol. Trace Elem. Res., 130, 172 (2009); doi:10.1007/s12011-009-8322-0.
M. Zhang, J. Gao and H. Yang, Cereal Chem., 86, 261 (2009); doi:10.1094/CCHEM-86-3-0261.
J.M. Sanchez-Ruiz, Subcell. Biochem., 24, 133 (1995); doi:10.1007/978-1-4899-1727-0_6.
G.E. Plum and K.J. Breslauer, Curr. Opin. Struct. Biol., 5, 682 (1995); doi:10.1016/0959-440X(95)80062-X.
M.C. Stumpe and H. Grubmuller, J. Am. Chem. Soc., 129, 16126 (2007); doi:10.1021/ja076216j.
E. Dufour, G.H. Hoa and T. Haertlé, Biochim. Biophys. Acta, 1206, 166 (1994); doi:10.1016/0167-4838(94)90204-6.
I. Pallarés, J. Vendrell, F.X. Avilés and S. Ventura, J. Mol. Biol., 342, 321 (2004); doi:10.1016/j.jmb.2004.06.089.
E.J. Guinn, L.M. Pegram, M.W. Capp, M.N. Pollock and M.T. Record, Proc. Natl. Acad. Sci. USA, 108, 16932 (2011); doi:10.1073/pnas.1109372108.
C.N. Pace, Methods Enzymol., 131, 266 (1986); doi:10.1016/0076-6879(86)31045-0.
J.A. Schellman, Biopolymers, 26, 549 (1987); doi:10.1002/bip.360260408.
S.M. West, A.D. Guise and J.B. Chaudhuri, I Chem. E., 75, 53 (1997).
P.E. Mason, G.W. Neilson, C.E. Dempsey, A.C. Barnes and J.M. Cruickshank, Proc. Natl. Acad. Sci. USA, 100, 4557 (2003); doi:10.1073/pnas.0735920100.
K.K. Turoverov, V.V. Verkhusha, M.M. Shavlovsky, A.G. Biktashev, O.I. Povarova and I.M. Kuznetsova, Biochemistry, 41, 1014 (2002); doi:10.1021/bi015548c.
S.D. Arntfield, E.D. Murray and M.A.H. Ismond, J. Agric. Food Chem., 38, 1335 (1990); doi:10.1021/jf00096a008.
A. Das and C. Mukhopadhyay, J. Phys. Chem. B, 112, 7903 (2008); doi:10.1021/jp800370e.
H.A. Scheraga and L. Mandelkern, J. Am. Chem. Soc., 75, 179 (1953); doi:10.1021/ja01097a047.