Copyright (c) 2026 Prof. Jagadeesh Kumar Ega

This work is licensed under a Creative Commons Attribution 4.0 International License.
One-Pot Synthesis of Pyrazine-2-carbaldehyde Containing 1,2,3-Triazoles: In vitro Antibacterial Activity
Corresponding Author(s) : Jagadeesh Kumar Ega
Asian Journal of Chemistry,
Vol. 38 No. 2 (2026): Vol 38 Issue 2, 2026
Abstract
In pursuit of enhanced antibacterial agents, a series of 3-(4-(aryl)-1H-1,2,3-triazol-1-yl)pyrazine-2-carbaldehydes was synthesised (4a-k) through the utilisation of 3-aminopyrazine-2-carbaldehyde, alkyne and triflyl azide via an in situ synthesised 3-azidopyrazine-2-carbaldehyde, followed by an assessment of their in vitro antibacterial activity. The investigation of antibacterial efficacy was conducted against three Gram-positive bacterial strains viz. Bacillus subtilis, Staphylococcus aureus and Staphylococcus epidermidis, employing the standard broth microdilution methodology. Among the compounds evaluated, compounds 4f and 4k demonstrated significant antibacterial efficacy, with minimum inhibitory concentration (MIC) values ranging from 3.12 ± 0.39 to 12.5 ± 0.87 µg/mL against the examined Gram-positive bacterial strains. Ultimately, further structural optimization of these potent compounds may lead to their development as promising candidates for future therapeutic applications.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S.K. Ahmed, S. Hussein, K. Qurbani, R.H. Ibrahim, A. Fareeq, K.A. Mahmood and M.G. Mohamed, J. Med., Surg. Public Health, 2, 100081 (2024); https://doi.org/10.1016/j.glmedi.2024.100081
- M.A. Salam, M.Y. Al-Amin, M.T. Salam, J.S. Pawar, N. Akhter, A.A. Rabaan and M.A.A. Alqumber, Healthcare, 11, 1946 (2023); https://doi.org/10.3390/healthcare11131946
- M.T. Cabeen and C. Jacobs-Wagner, Nat. Rev. Microbiol., 3, 601 (2005); https://doi.org/10.1038/nrmicro1205
- C. Gao, Y.-L. Fan, F. Zhao, Q.-C. Ren, X. Wu, L. Chang and F. Gao, Eur. J. Med. Chem., 157, 1081 (2018); https://doi.org/10.1016/j.ejmech.2018. 08.061
- H. Muroi, K. Nihei, K. Tsujimoto and I. Kubo, Bioorg. Med. Chem., 12, 583 (2004); https://doi.org/10.1016/j.bmc.2003.10.046
- R.F. Pfeltz and B.J. Wilkinson, Curr. Drug Targets Infect. Disord., 4, 273 (2004); https://doi.org/10.2174/1568005043340470
- F.C. Tenover and L.C. Mc Donald, Curr. Opin. Infect. Dis., 18, 300 (2005); https://doi.org/10.1097/01.qco.0000171923.62699.0c
- B.F. Abdel-Wahab, E. Abdel-Latif, H.A. Mohamed and G.E.A. Awad, Eur. J. Med. Chem., 52, 263 (2012); https://doi.org/10.1016/j.ejmech.2012.03.023
- Y.L. Angell and K. Burgess, Chem. Soc. Rev., 36, 1674 (2007); https://doi.org/10.1039/b701444a
- C. Prasad, P. Nagesh, C. Kishan, V.M. Krishna, A. Balaswamy, V. Manga, B. Prashanth and Y. Aparna, Russ. J. Gen. Chem., 93, 1162 (2023); https://doi.org/10.1134/S1070363223050171
- M.V. Patel and D.J. Kaneriya, Russ. J. Org. Chem., 60, 2439 (2024); https://doi.org/10.1134/S1070428024120182
- Y. Wang, W. Wang, Y.-F. Wang, C.-J. Liu, W.-H. Su, T.-Z. Gao, J.-J. Li and W.-S. Li, Russ. J. Bioorgan. Chem., 50, 982 (2024); https://doi.org/10.1134/S1068162024120343
- K. Vidya, Russ. J. Bioorgan. Chem., 49, 1328 (2023); https://doi.org/10.1134/S1068162023060134
- A. Negm, A.R. Rabee, H. Abdel-Hamid, S.A. Nasr, D.A. Ghareeb, R.S. Ibrahim, M.B. Hawsawi, A.M. Abdelmoneim, M.M.F. Ismail and M.S. Ayoup, Russ. J. Bioorgan. Chem., 51, 901 (2025); https://doi.org/10.1134/S106816202460572X
- G. Swetha and Naseem, Russ. J. Bioorgan. Chem., 50, 2162 (2024); https://doi.org/10.1134/S1068162024060098
- P. Pinnoju, S. Kudikala, M. Scandakashi, M. Ramesh and S. Madderla, Russ. J. Bioorgan. Chem., 50, 1724 (2024); https://doi.org/10.1134/S106816202405025X
- A. Keivanloo, S. Sepehri, M. Bakherad and M. Eskandari, ChemistrySelect, 5, 4091 (2020); https://doi.org/10.1002/slct.202000266
- H. Qiu, P. Zhou, W. Liu, J. Zhang and B. Chen, ChemistrySelect, 5, 2935 (2020); https://doi.org/10.1002/slct.201904238
- S. Kumar, C.C. Malakar and V. Singh, ChemistrySelect, 6, 4005 (2021); https://doi.org/10.1002/slct.202100002
- E. Ramya Sucharitha, T.M. Krishna, R. Manchal, G. Ramesh and S. Narsimha, Bioorg. Med. Chem. Lett., 47, 128201 (2021); https://doi.org/10.1016/j.bmcl.2021.128201
- R. Samala, R.K. M, A.K. Bapuram, V. Nasipireddy and S. Narsimha, J. Heterocycl. Chem., 61, 600 (2024); https://doi.org/10.1002/jhet.4788
- B. Zhang, Eur. J. Med. Chem., 168, 357 (2019); https://doi.org/10.1016/j.ejmech.2019.02.055
- S. kumar, P. Dinesha, D. Udayakumar, V.P. Shetty and V.K. Deekshit, J. Mol. Struct., 1304, 137657 (2024); https://doi.org/10.1016/j.molstruc.2024.137657
- G.-Q. Chen, H.-Y. Guo, Z.-S. Quan, Q.-K. Shen, X. Li and T. Luan, Molecules, 28, 7440 (2023); https://doi.org/10.3390/molecules28217440
- Z. Hu, H. Dong, Z. Si, Y. Zhao and Y. Liang, Molecules, 28, 7876 (2023); https://doi.org/10.3390/molecules28237876
- A.A. Siddiki, S. Parmar, H.K. Chaudhari, S.S.P. Yadav and R.S. Chauhan, ChemistrySelect, 9, e202402487 (2024); https://doi.org/10.1002/slct.202402487
- R.W. Huigens III, B.R. Brummel, S. Tenneti, A.T. Garrison and T. Xiao, Molecules, 27, 1112 (2022); https://doi.org/10.3390/molecules27031112
- S. Narsimha, S.K. Nukala, T.S. Jyostna, M. Ravinder, M.S. Rao and N. Vasudeva Reddy, J. Heterocycl. Chem., 57, 1655 (2020); https://doi.org/10.1002/jhet.3890
- S. Tumu, A.S.S. Rao and J.K. Ega, Russ. J. Bioorgan. Chem., 51, 1700 (2025); https://doi.org/10.1134/S1068162024606633
- R.M. Narender, S. Kavitha, K.E. Jagadeesh, M. Bhimcharan and R.N. Rajashekar, Indian J. Chem., 63, 701 (2024); https://doi.org/10.56042/ijc.v63i7.7677
References
S.K. Ahmed, S. Hussein, K. Qurbani, R.H. Ibrahim, A. Fareeq, K.A. Mahmood and M.G. Mohamed, J. Med., Surg. Public Health, 2, 100081 (2024); https://doi.org/10.1016/j.glmedi.2024.100081
M.A. Salam, M.Y. Al-Amin, M.T. Salam, J.S. Pawar, N. Akhter, A.A. Rabaan and M.A.A. Alqumber, Healthcare, 11, 1946 (2023); https://doi.org/10.3390/healthcare11131946
M.T. Cabeen and C. Jacobs-Wagner, Nat. Rev. Microbiol., 3, 601 (2005); https://doi.org/10.1038/nrmicro1205
C. Gao, Y.-L. Fan, F. Zhao, Q.-C. Ren, X. Wu, L. Chang and F. Gao, Eur. J. Med. Chem., 157, 1081 (2018); https://doi.org/10.1016/j.ejmech.2018. 08.061
H. Muroi, K. Nihei, K. Tsujimoto and I. Kubo, Bioorg. Med. Chem., 12, 583 (2004); https://doi.org/10.1016/j.bmc.2003.10.046
R.F. Pfeltz and B.J. Wilkinson, Curr. Drug Targets Infect. Disord., 4, 273 (2004); https://doi.org/10.2174/1568005043340470
F.C. Tenover and L.C. Mc Donald, Curr. Opin. Infect. Dis., 18, 300 (2005); https://doi.org/10.1097/01.qco.0000171923.62699.0c
B.F. Abdel-Wahab, E. Abdel-Latif, H.A. Mohamed and G.E.A. Awad, Eur. J. Med. Chem., 52, 263 (2012); https://doi.org/10.1016/j.ejmech.2012.03.023
Y.L. Angell and K. Burgess, Chem. Soc. Rev., 36, 1674 (2007); https://doi.org/10.1039/b701444a
C. Prasad, P. Nagesh, C. Kishan, V.M. Krishna, A. Balaswamy, V. Manga, B. Prashanth and Y. Aparna, Russ. J. Gen. Chem., 93, 1162 (2023); https://doi.org/10.1134/S1070363223050171
M.V. Patel and D.J. Kaneriya, Russ. J. Org. Chem., 60, 2439 (2024); https://doi.org/10.1134/S1070428024120182
Y. Wang, W. Wang, Y.-F. Wang, C.-J. Liu, W.-H. Su, T.-Z. Gao, J.-J. Li and W.-S. Li, Russ. J. Bioorgan. Chem., 50, 982 (2024); https://doi.org/10.1134/S1068162024120343
K. Vidya, Russ. J. Bioorgan. Chem., 49, 1328 (2023); https://doi.org/10.1134/S1068162023060134
A. Negm, A.R. Rabee, H. Abdel-Hamid, S.A. Nasr, D.A. Ghareeb, R.S. Ibrahim, M.B. Hawsawi, A.M. Abdelmoneim, M.M.F. Ismail and M.S. Ayoup, Russ. J. Bioorgan. Chem., 51, 901 (2025); https://doi.org/10.1134/S106816202460572X
G. Swetha and Naseem, Russ. J. Bioorgan. Chem., 50, 2162 (2024); https://doi.org/10.1134/S1068162024060098
P. Pinnoju, S. Kudikala, M. Scandakashi, M. Ramesh and S. Madderla, Russ. J. Bioorgan. Chem., 50, 1724 (2024); https://doi.org/10.1134/S106816202405025X
A. Keivanloo, S. Sepehri, M. Bakherad and M. Eskandari, ChemistrySelect, 5, 4091 (2020); https://doi.org/10.1002/slct.202000266
H. Qiu, P. Zhou, W. Liu, J. Zhang and B. Chen, ChemistrySelect, 5, 2935 (2020); https://doi.org/10.1002/slct.201904238
S. Kumar, C.C. Malakar and V. Singh, ChemistrySelect, 6, 4005 (2021); https://doi.org/10.1002/slct.202100002
E. Ramya Sucharitha, T.M. Krishna, R. Manchal, G. Ramesh and S. Narsimha, Bioorg. Med. Chem. Lett., 47, 128201 (2021); https://doi.org/10.1016/j.bmcl.2021.128201
R. Samala, R.K. M, A.K. Bapuram, V. Nasipireddy and S. Narsimha, J. Heterocycl. Chem., 61, 600 (2024); https://doi.org/10.1002/jhet.4788
B. Zhang, Eur. J. Med. Chem., 168, 357 (2019); https://doi.org/10.1016/j.ejmech.2019.02.055
S. kumar, P. Dinesha, D. Udayakumar, V.P. Shetty and V.K. Deekshit, J. Mol. Struct., 1304, 137657 (2024); https://doi.org/10.1016/j.molstruc.2024.137657
G.-Q. Chen, H.-Y. Guo, Z.-S. Quan, Q.-K. Shen, X. Li and T. Luan, Molecules, 28, 7440 (2023); https://doi.org/10.3390/molecules28217440
Z. Hu, H. Dong, Z. Si, Y. Zhao and Y. Liang, Molecules, 28, 7876 (2023); https://doi.org/10.3390/molecules28237876
A.A. Siddiki, S. Parmar, H.K. Chaudhari, S.S.P. Yadav and R.S. Chauhan, ChemistrySelect, 9, e202402487 (2024); https://doi.org/10.1002/slct.202402487
R.W. Huigens III, B.R. Brummel, S. Tenneti, A.T. Garrison and T. Xiao, Molecules, 27, 1112 (2022); https://doi.org/10.3390/molecules27031112
S. Narsimha, S.K. Nukala, T.S. Jyostna, M. Ravinder, M.S. Rao and N. Vasudeva Reddy, J. Heterocycl. Chem., 57, 1655 (2020); https://doi.org/10.1002/jhet.3890
S. Tumu, A.S.S. Rao and J.K. Ega, Russ. J. Bioorgan. Chem., 51, 1700 (2025); https://doi.org/10.1134/S1068162024606633
R.M. Narender, S. Kavitha, K.E. Jagadeesh, M. Bhimcharan and R.N. Rajashekar, Indian J. Chem., 63, 701 (2024); https://doi.org/10.56042/ijc.v63i7.7677