Copyright (c) 2026 Dr. Harasit Kumar Mandal Harasit

This work is licensed under a Creative Commons Attribution 4.0 International License.
From Equilibrium to Emergence: The Physical Foundations of Chemical Order – A Conceptual Framework Linking Thermodynamics, Quantum Mechanics and Systems Chemistry
Corresponding Author(s) : Harasit Kumar Mandal
Asian Journal of Chemistry,
Vol. 38 No. 2 (2026): Vol 38 Issue 2, 2026
Abstract
Chemistry has evolved from empirical pattern recognition to a unified, physics-informed science governed by universal principles. This perspective traces the conceptual progression of chemical thought from Mendeleev’s periodic classification to thermodynamics, quantum mechanics and the emerging systems view of self-organisation and complexity. By dividing this trajectory into four historical phases viz. (i) thermodynamic and kinetic universality, (ii) nonideal solution theory and ionic interactions, (iii) quantum-mechanical interpretation of matter and bonding, and (iv) self-organisation in far-from-equilibrium systems. Each phase contributed to a deeper understanding of matter-energy relationships and strengthened the theoretical foundations of chemistry. Emphasis is placed on the interplay between the macroscopic laws and microscopic models, with recurring themes of order, symmetry and energy flow serving as unifying principles across both equilibrium and non-equilibrium phenomena. This conceptual synthesis illustrates the natural convergence of thermodynamics, statistical mechanics, and quantum theory, giving rise to systems chemistry and the modern study of emergent behaviour. Beyond its historical narrative, the work asserts that an analysis of chemistry through its evolving paradigms reveals a coherent scientific continuum integrating atomic theory, information and complexity, thereby positioning chemistry as a central discipline for elucidating organisational principles in natural systems.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- D.I. Mendeleev, J. Russ. Chem. Soc., 1, 60 (1869).
- E.R. Scerri, Sci. Am., 279, 78 (1998); https://doi.org/10.1038/scientificamerican0998-78
- E.R. Scerri, The Periodic Table: Its Story and Its Significance, Oxford University Press, Oxford (2007).
- S.G. Brush, The History of Modern Science: A Guide to the Second Scientific Revolution. Ames, IA, USA: Iowa State Univ. Press (1988).
- P.A.M. Dirac, Proc. R. Soc. Lond., A Contain. Pap. Math. Phys. Character, 123, 714 (1929); https://doi.org/10.1098/rspa.1929.0094
- P. Debye and E. Hückel, Phys. Z., 24, 185 (1923).
- E. Schrödinger, Ann. Phys., 384, 361 (1926); https://doi.org/10.1002/andp.19263840404
- I.N. Levine, Quantum Chemistry, Pearson, Boston, edn. 7 (2014).
- J.-M. Lehn, Angew. Chem. Int. Ed., 52, 2836 (2013); https://doi.org/10.1002/anie.201208397
- J.-M. Lehn, Proc. Natl. Acad. Sci. USA, 99, 4763 (2002); https://doi.org/10.1073/pnas.072065599
- A.-D.C. Nguindjel, P.J. de Visser, M. Winkens and P.A. Korevaar, Phys. Chem. Chem. Phys., 24, 23980 (2022); https://doi.org/10.1039/D2CP02542F
- P.P. Edwards, R.G. Egdell, D. Fenske and B. Yao, Philos. Trans.- Royal Soc., Math. Phys. Eng. Sci., 378, 20190537 (2020); https://doi.org/10.1098/rsta.2019.0537
- C. Truesdell, The Tragicomical History of Thermodynamics, 1822-1854, Springer: New York (1980).
- D.S.L. Cardwell, From Watt to Clausius: The Rise of Thermodynamics in the Early Industrial Age, Cornell University Press: Ithaca (1971).
- P. Atkins and J. de Paula, Physical Chemistry, Oxford University Press, Oxford, edn. 10 (2014).
- H.B. Callen, Thermodynamics and an Introduction to Thermostatistics, Wiley, New York edn.: 2 (1985).
- J. Uffink, Stud. Hist. Philos. Sci. Part Stud. Hist. Philos. Mod. Phys., 32, 305 (2001); https://doi.org/10.1016/S1355-2198(01)00016-8
- E.H. Lieb and J. Yngvason, Phys. Rep., 310, 1 (1999); https://doi.org/10.1016/S0370-1573(98)00082-9
- S. Carnot, Reflections on the Motive Power of Fire, Manchester University Press: Manchester, U.K. (1824/1986).
- E.T. Jaynes, in eds.: G.J. Erickson and C.R. Smith, Maximum-Entropy and Bayesian Methods in Science and Engineering, Springer: Dordrecht, vol. 1, pp. 267-281 (1988).
- M.J. Klein, Phys. Today, 27, 23 (1974); https://doi.org/10.1063/1.3128802
- J. Uffink, in eds.: A. Greven, G. Keller and G. Warnecke, Entropy, Princeton University Press, Princeton, pp. 107-194 (2003).
- E. Mendoza, Reflections on the Motive Power of Fire by Sadi Carnot and Other Papers on the Second Law of Thermodynamics, Dover: New York, pp. 163-193 (1960).
- S.R. Logan, J. Chem. Educ., 59, 279 (1982); https://doi.org/10.1021/ed059p279
- K.J. Laidler, J. Chem. Educ., 61, 494 (1984); https://doi.org/10.1021/ed061p494
- E. Pollak and P. Talkner, Chaos, 15, 026116 (2005); https://doi.org/10.1063/1.1858782
- D.G. Truhlar, J. Chem. Educ., 55, 309 (1978); https://doi.org/10.1021/ed055p309
- H. Eyring, J. Chem. Phys., 3, 107 (1935); https://doi.org/10.1063/1.1749604
- P. Hänggi, P. Talkner and M. Borkovec, Rev. Mod. Phys., 62, 251 (1990); https://doi.org/10.1103/RevModPhys.62.251
- D.G. Truhlar, B.C. Garrett and S.J. Klippenstein, J. Phys. Chem., 100, 12771 (1996); https://doi.org/10.1021/jp953748q
- J.C.M. Kistemaker, A.S. Lubbe, E.A. Bloemsma and B.L. Feringa, ChemPhysChem, 17, 1819 (2016); https://doi.org/10.1002/cphc.201501177
- W. Stannard, Nat. Sci., 10, 1 (2018); https://doi.org/10.4236/ns.2018.101001
- G. Scatchard, Chem. Rev., 3, 383 (1927); https://doi.org/10.1021/cr60012a003
- R.G. Bates, J. Am. Chem. Soc., 77, 6086 (1955); https://doi.org/10.1021/ja01627a105
- V.K. LaMer and C.F. Mason, J. Am. Chem. Soc., 49, 410 (1927); https://doi.org/10.1021/ja01401a012
- K.J. Laidler, Can. J. Chem., 34, 1107 (1956); https://doi.org/10.1139/v56-144
- J.C. Ghosh, J. Chem. Soc. Trans., 113, 449 (1918); https://doi.org/10.1039/CT9181300449
- T. Graham, Philos. Trans. R. Soc. Lond., 140, 1 (1850); https://doi.org/10.1098/rstl.1850.0001
- T. Graham, Proc. R. Soc. Lond., 13, 335 (1864); https://doi.org/10.1098/rspl.1863.0076
- H. Freundlich, Colloid & Capillary Chemistry, Methuen & Co. Ltd.: London (1926).
- H.B. Weiser, J. Chem. Educ., 7, 1448 (1930); https://doi.org/10.1021/ed007p1448
- (a) P.J. Flory, J. Chem. Phys., 9, 660 (1941); https://doi.org/10.1063/1.1750971; (b) P.J. Flory, J. Chem. Phys., 10, 51 (1942); https://doi.org/10.1063/1.1723621
- J.W. McBain, Colloid Science: Micelles and Macromolecules, D.C. Heath & Co.: Boston (1950).
- B. Vincent, Adv. Colloid Interface Sci., 203, 51 (2014); https://doi.org/10.1016/j.cis.2013.11.012
- R. Nagarajan, in eds.: L.S. Romsted, One Hundred Years of Micelles: Evolution of the Theory of Micellization, In: Surfactant Science and Technology: Retrospects and Prospects, Taylor & Francis: London Chap. 1, pp. 3–53 (2014).
- J. Tong, B. Peng, G.M. Kontogeorgis and X. Liang, J. Mol. Liq., 371, 121086 (2023); https://doi.org/10.1016/j.molliq.2022.121086
- S. Kournopoulos, M.S. Santos, S. Ravipati, A.J. Haslam, G. Jackson, I.G. Economou and A. Galindo, J. Phys. Chem. B, 126, 9821 (2022); https://doi.org/10.1021/acs.jpcb.2c03915
- J.D. Bernal and R.H. Fowler, J. Chem. Phys., 1, 515 (1933); https://doi.org/10.1063/1.1749327
- Y. Marcus and G. Hefter, Chem. Rev., 106, 4585 (2006); https://doi.org/10.1021/cr040087x
- K.S. Pitzer, Activity Coefficients in Electrolyte Solutions, CRC Press, Boca Raton, edn. 2 (1991).
- S.H. Saravi and A.Z. Panagiotopoulos, J. Phys. Chem. B, 125, 8511 (2021); https://doi.org/10.1021/acs.jpcb.1c04019
- J. Kielland, J. Am. Chem. Soc., 59, 1675 (1937); https://doi.org/10.1021/ja01288a032
- J.N. Brønsted, Z. Phys. Chem., 102, 169 (1923).
- L. Onsager, Chem. Rev., 13, 73 (1933); https://doi.org/10.1021/cr60044a006
- R.A. Robinson and R.H. Stokes, Annu. Rev. Phys. Chem., 8, 37 (1957); https://doi.org/10.1146/annurev.pc.08.100157.000345
- R.H. Stokes and R.A. Robinson, J. Am. Chem. Soc., 70, 1870 (1948); https://doi.org/10.1021/ja01185a065
- R.E. Busby and V.S. Griffiths, J. Chem. Eng. Data, 10, 29 (1965); https://doi.org/10.1021/je60024a011
- Y. Levin, Rep. Prog. Phys., 65, 1577 (2002); https://doi.org/10.1088/0034-4885/65/11/201
- K.S. Pitzer, J. Phys. Chem., 77, 268 (1973); https://doi.org/10.1021/j100621a026
- Y. Zhang and P.S. Cremer, Curr. Opin. Chem. Biol., 10, 658 (2006); https://doi.org/10.1016/j.cbpa.2006.09.020
- D.A. McQuarrie, Quantum Chemistry, University Science Books: Sausalito, edn. 2 (2008).
- S.C. Wang, Phys. Rev., 31, 579 (1928); https://doi.org/10.1103/PhysRev.31.579
- H.M. James and A.S. Coolidge, J. Chem. Phys., 1, 825 (1933); https://doi.org/10.1063/1.1749252
- M. Planck, Ann. Phys., 309, 553 (1901); https://doi.org/10.1002/andp.19013090310
- M. Planck, The Theory of Heat Radiation, P. Blakiston’s Son & Co.: Philadelphia, USA (1914).
- W. Wien, Ann. Phys., 294, 662 (1896); https://doi.org/10.1002/andp.18962940803
- T.H. Boyer, Am. J. Phys., 86, 495 (2018); https://doi.org/10.1119/1.5034785
- O. Passon and J. Grebe-Ellis, Eur. J. Phys., 38, 035404 (2017); https://doi.org/10.1088/1361-6404/aa6134
- A. Einstein, Ann. Phys., 17, 132 (1905); [English transl.: Am. J. Phys., 33, 367 (1965)].
- R. Eisberg and R. Resnick, Quantum Physics of Atoms, Molecules, Solids, Nuclei, and Particles, Wiley: New York, edn. 2 (1985).
- N. Bohr, Lond. Edinb. Dublin Philos. Mag. J. Sci., 26, 1 (1913); https://doi.org/10.1080/14786441308634955
- A. Pais, Niels Bohr’s Times: In Physics, Philosophy and Polity, Oxford University Press: Oxford (1991).
- C.J. Davisson and L.H. Germer, Phys. Rev., 30, 705 (1927); https://doi.org/10.1103/PhysRev.30.705
- L. de Broglie, Ann. Phys., 10, 22 (1925); https://doi.org/10.1051/anphys/192510030022
- R.P. Feynman, R.B. Leighton and M. Sands, The Feynman Lectures on Physics, Addison–Wesley, Reading, vol. 3 (1965).
- D.J. Griffiths, Introduction to Quantum Mechanics, Cambridge University Press, Cambridge, edn. 3 (2018).
- L. Pauling, J. Am. Chem. Soc., 53, 1367 (1931); https://doi.org/10.1021/ja01355a027
- E. Schrödinger, Phys. Rev., 28, 1049 (1926); https://doi.org/10.1103/PhysRev.28.1049
- P. Atkins and R. Friedman, Molecular Quantum Mechanics, Oxford University Press, Oxford, edn. 5 (2011).
- W. Heitler and F. London, Eur. Phys. J. A, 44, 455 (1927); https://doi.org/10.1007/BF01397394
- G. Nicolis and I. Prigogine, Self-Organization in Nonequilibrium Systems: From Dissipative Structures to Order through Fluctuations, Wiley: New York (1977).
- L. Pauling, The Nature of the Chemical Bond, Cornell University Press, Ithaca, edn. 3 (1960).
- H. Haken, Synergetics: An Introduction, Springer, Berlin, edn, 3 (1983).
- M. Tlidi, M.G. Clerc and K. Panajotov, Philos. Trans. R. Soc. A, 376, 2124 (2018).
- A.B. Pechenkin, J. Biosci., 34, 365 (2009); https://doi.org/10.1007/s12038-009-0042-2
- K.S. Kiprijanov, Ann. Phys., 528, 233 (2016); https://doi.org/10.1002/andp.201600025
- L. Hegedüs, H.-D. Försterling, L. Onel, M. Wittmann and Z. Noszticzius, J. Phys. Chem. A, 110, 12839 (2006); https://doi.org/10.1021/jp064708x
- J.J. Tyson, Biochem. J., 479, 185 (2022); https://doi.org/10.1042/BCJ20210370
- R.J. Field and R.M. Noyes, J. Chem. Phys., 60, 1877 (1974); https://doi.org/10.1063/1.1681288
- R.J. Field, E. Körös and R.M. Noyes, J. Am. Chem. Soc., 94, 8649 (1972); https://doi.org/10.1021/ja00780a001
- A.M. Turing, Philos. Trans. R. Soc. B, 237, 37 (1952).
- J.D. Murray, Mathematical Biology I: An Introduction, Springer: New York, edn. 3 (2002).
- M.C. Cross and P.C. Hohenberg, Rev. Mod. Phys., 65, 851 (1993); https://doi.org/10.1103/RevModPhys.65.851
- S. Kondo and T. Miura, Science, 329, 1616 (2010); https://doi.org/10.1126/science.1179047
- P.K. Maini, T.E. Woolley, R.E. Baker, E.A. Gaffney and S.S. Lee, Interface Focus, 2, 487 (2012); https://doi.org/10.1098/rsfs.2011.0113
- I.R. Epstein and J.A. Pojman, An Introduction to Nonlinear Chemical Dynamics: Oscillations, Waves, Patterns and Chaos, Oxford University Press: Oxford (1998).
- I. Lengyel and I.R. Epstein, Proc. Natl. Acad. Sci. USA, 89, 3977 (1992); https://doi.org/10.1073/pnas.89.9.3977
- Q. Ouyang and H.L. Swinney, Nature, 352, 610 (1991); https://doi.org/10.1038/352610a0
- P. Ball, The Self-Made Tapestry: Pattern Formation in Nature, Oxford University Press: Oxford (1999).
- P. De Kepper, V. Castets, E. Dulos and J. Boissonade, Physica D, 49, 161 (1991); https://doi.org/10.1016/0167-2789(91)90204-M
- P.L. Luisi, The Emergence of Life: From Chemical Origins to Synthetic Biology, Cambridge University Press: Cambridge (2006).
- K. Ruiz-Mirazo, C. Briones and A. de la Escosura, Chem. Rev., 114, 285 (2014); https://doi.org/10.1021/cr2004844
- S.L. Miller, Science, 117, 528 (1953); https://doi.org/10.1126/science.117.3046.528
- W. Martin, J. Baross, D. Kelley and M.J. Russell, Nat. Rev. Microbiol., 6, 805 (2008); https://doi.org/10.1038/nrmicro1991.
- S. Pizzarello and E. Shock, Cold Spring Harb. Perspect. Biol., 2, a002105 (2010).
- J.-M. Lehn, Supramolecular Chemistry: Concepts and Perspectives, Wiley-VCH: Weinheim (1995).
- D.W. Deamer and J.P. Dworkin, Top. Curr. Chem., 259, 1 (2005); https://doi.org/10.1007/b136806
- K. Kruger, P.J. Grabowski, A.J. Zaug, J. Sands, D.E. Gottschling and T.R. Cech, Cell, 31, 147 (1982); https://doi.org/10.1016/0092-8674(82)90414-7
- W. Gilbert, Nature, 319, 618 (1986); https://doi.org/10.1038/319618a0
- M.W. Powner, B. Gerland and J.D. Sutherland, Nature, 459, 239 (2009); https://doi.org/10.1038/nature08013
- G.F. Joyce, Nature, 418, 214 (2002); https://doi.org/10.1038/418214a
- E.V. Koonin and A.S. Novozhilov, IUBMB Life, 61, 99 (2009); https://doi.org/10.1002/iub.146
- J.W. Szostak, D.P. Bartel and P.L. Luisi, Nature, 409, 387 (2001); https://doi.org/10.1038/35053176
- G. Ashkenasy, T.M. Hermans, S. Otto and A.F. Taylor, Chem. Soc. Rev., 46, 2543 (2017); https://doi.org/10.1039/C7CS00117G
- D.G. Blackmond, Cold Spring Harb. Perspect. Biol., 11, a032540 (2019); https://doi.org/10.1101/cshperspect.a032540
- K. Adamala and J.W. Szostak, Nat. Chem., 5, 495 (2013); https://doi.org/10.1038/nchem.1650
- G. Nicolis and I. Prigogine, Self-Organization in Nonequilibrium Systems: From Dissipative Structures to Order Through Fluctuations, Wiley-Interscience, New York (1977).
- S.A. Kauffman, The Origins of Order: Self-Organization and Selection in Evolution, Oxford University Press: Oxford (1993).
- P.W.K. Rothemund, Nature, 440, 297 (2006); https://doi.org/10.1038/nature04586
- M.A.C. Stuart, W.T.S. Huck, J. Genzer, M. Müller, C. Ober, M. Stamm, G.B. Sukhorukov, I. Szleifer, V.V. Tsukruk, M. Urban, F. Winnik, S. Zauscher, I. Luzinov and S. Minko, Nat. Mater., 9, 101 (2010); https://doi.org/10.1038/nmat2614
- S. Rasmussen, L. Chen, M. Nilsson and S. Abe, Artif. Life, 9, 269 (2003); https://doi.org/10.1162/106454603322392479
- G. Tom, S.P. Schmid, S.G. Baird, Y. Cao, K. Darvish, H. Hao, S. Lo, S. Pablo-García, E.M. Rajaonson, M. Skreta, N. Yoshikawa, S. Corapi, G.D. Akkoc, F. Strieth-Kalthoff, M. Seifrid and A. Aspuru-Guzik, Chem. Rev., 124, 9633 (2024); https://doi.org/10.1021/acs.chemrev.4c00055
- J.M. Granda, L. Donina, V. Dragone, D.L. Long and L. Cronin, Nature, 559, 377 (2018); https://doi.org/10.1038/s41586-018-0307-8
References
D.I. Mendeleev, J. Russ. Chem. Soc., 1, 60 (1869).
E.R. Scerri, Sci. Am., 279, 78 (1998); https://doi.org/10.1038/scientificamerican0998-78
E.R. Scerri, The Periodic Table: Its Story and Its Significance, Oxford University Press, Oxford (2007).
S.G. Brush, The History of Modern Science: A Guide to the Second Scientific Revolution. Ames, IA, USA: Iowa State Univ. Press (1988).
P.A.M. Dirac, Proc. R. Soc. Lond., A Contain. Pap. Math. Phys. Character, 123, 714 (1929); https://doi.org/10.1098/rspa.1929.0094
P. Debye and E. Hückel, Phys. Z., 24, 185 (1923).
E. Schrödinger, Ann. Phys., 384, 361 (1926); https://doi.org/10.1002/andp.19263840404
I.N. Levine, Quantum Chemistry, Pearson, Boston, edn. 7 (2014).
J.-M. Lehn, Angew. Chem. Int. Ed., 52, 2836 (2013); https://doi.org/10.1002/anie.201208397
J.-M. Lehn, Proc. Natl. Acad. Sci. USA, 99, 4763 (2002); https://doi.org/10.1073/pnas.072065599
A.-D.C. Nguindjel, P.J. de Visser, M. Winkens and P.A. Korevaar, Phys. Chem. Chem. Phys., 24, 23980 (2022); https://doi.org/10.1039/D2CP02542F
P.P. Edwards, R.G. Egdell, D. Fenske and B. Yao, Philos. Trans.- Royal Soc., Math. Phys. Eng. Sci., 378, 20190537 (2020); https://doi.org/10.1098/rsta.2019.0537
C. Truesdell, The Tragicomical History of Thermodynamics, 1822-1854, Springer: New York (1980).
D.S.L. Cardwell, From Watt to Clausius: The Rise of Thermodynamics in the Early Industrial Age, Cornell University Press: Ithaca (1971).
P. Atkins and J. de Paula, Physical Chemistry, Oxford University Press, Oxford, edn. 10 (2014).
H.B. Callen, Thermodynamics and an Introduction to Thermostatistics, Wiley, New York edn.: 2 (1985).
J. Uffink, Stud. Hist. Philos. Sci. Part Stud. Hist. Philos. Mod. Phys., 32, 305 (2001); https://doi.org/10.1016/S1355-2198(01)00016-8
E.H. Lieb and J. Yngvason, Phys. Rep., 310, 1 (1999); https://doi.org/10.1016/S0370-1573(98)00082-9
S. Carnot, Reflections on the Motive Power of Fire, Manchester University Press: Manchester, U.K. (1824/1986).
E.T. Jaynes, in eds.: G.J. Erickson and C.R. Smith, Maximum-Entropy and Bayesian Methods in Science and Engineering, Springer: Dordrecht, vol. 1, pp. 267-281 (1988).
M.J. Klein, Phys. Today, 27, 23 (1974); https://doi.org/10.1063/1.3128802
J. Uffink, in eds.: A. Greven, G. Keller and G. Warnecke, Entropy, Princeton University Press, Princeton, pp. 107-194 (2003).
E. Mendoza, Reflections on the Motive Power of Fire by Sadi Carnot and Other Papers on the Second Law of Thermodynamics, Dover: New York, pp. 163-193 (1960).
S.R. Logan, J. Chem. Educ., 59, 279 (1982); https://doi.org/10.1021/ed059p279
K.J. Laidler, J. Chem. Educ., 61, 494 (1984); https://doi.org/10.1021/ed061p494
E. Pollak and P. Talkner, Chaos, 15, 026116 (2005); https://doi.org/10.1063/1.1858782
D.G. Truhlar, J. Chem. Educ., 55, 309 (1978); https://doi.org/10.1021/ed055p309
H. Eyring, J. Chem. Phys., 3, 107 (1935); https://doi.org/10.1063/1.1749604
P. Hänggi, P. Talkner and M. Borkovec, Rev. Mod. Phys., 62, 251 (1990); https://doi.org/10.1103/RevModPhys.62.251
D.G. Truhlar, B.C. Garrett and S.J. Klippenstein, J. Phys. Chem., 100, 12771 (1996); https://doi.org/10.1021/jp953748q
J.C.M. Kistemaker, A.S. Lubbe, E.A. Bloemsma and B.L. Feringa, ChemPhysChem, 17, 1819 (2016); https://doi.org/10.1002/cphc.201501177
W. Stannard, Nat. Sci., 10, 1 (2018); https://doi.org/10.4236/ns.2018.101001
G. Scatchard, Chem. Rev., 3, 383 (1927); https://doi.org/10.1021/cr60012a003
R.G. Bates, J. Am. Chem. Soc., 77, 6086 (1955); https://doi.org/10.1021/ja01627a105
V.K. LaMer and C.F. Mason, J. Am. Chem. Soc., 49, 410 (1927); https://doi.org/10.1021/ja01401a012
K.J. Laidler, Can. J. Chem., 34, 1107 (1956); https://doi.org/10.1139/v56-144
J.C. Ghosh, J. Chem. Soc. Trans., 113, 449 (1918); https://doi.org/10.1039/CT9181300449
T. Graham, Philos. Trans. R. Soc. Lond., 140, 1 (1850); https://doi.org/10.1098/rstl.1850.0001
T. Graham, Proc. R. Soc. Lond., 13, 335 (1864); https://doi.org/10.1098/rspl.1863.0076
H. Freundlich, Colloid & Capillary Chemistry, Methuen & Co. Ltd.: London (1926).
H.B. Weiser, J. Chem. Educ., 7, 1448 (1930); https://doi.org/10.1021/ed007p1448
(a) P.J. Flory, J. Chem. Phys., 9, 660 (1941); https://doi.org/10.1063/1.1750971; (b) P.J. Flory, J. Chem. Phys., 10, 51 (1942); https://doi.org/10.1063/1.1723621
J.W. McBain, Colloid Science: Micelles and Macromolecules, D.C. Heath & Co.: Boston (1950).
B. Vincent, Adv. Colloid Interface Sci., 203, 51 (2014); https://doi.org/10.1016/j.cis.2013.11.012
R. Nagarajan, in eds.: L.S. Romsted, One Hundred Years of Micelles: Evolution of the Theory of Micellization, In: Surfactant Science and Technology: Retrospects and Prospects, Taylor & Francis: London Chap. 1, pp. 3–53 (2014).
J. Tong, B. Peng, G.M. Kontogeorgis and X. Liang, J. Mol. Liq., 371, 121086 (2023); https://doi.org/10.1016/j.molliq.2022.121086
S. Kournopoulos, M.S. Santos, S. Ravipati, A.J. Haslam, G. Jackson, I.G. Economou and A. Galindo, J. Phys. Chem. B, 126, 9821 (2022); https://doi.org/10.1021/acs.jpcb.2c03915
J.D. Bernal and R.H. Fowler, J. Chem. Phys., 1, 515 (1933); https://doi.org/10.1063/1.1749327
Y. Marcus and G. Hefter, Chem. Rev., 106, 4585 (2006); https://doi.org/10.1021/cr040087x
K.S. Pitzer, Activity Coefficients in Electrolyte Solutions, CRC Press, Boca Raton, edn. 2 (1991).
S.H. Saravi and A.Z. Panagiotopoulos, J. Phys. Chem. B, 125, 8511 (2021); https://doi.org/10.1021/acs.jpcb.1c04019
J. Kielland, J. Am. Chem. Soc., 59, 1675 (1937); https://doi.org/10.1021/ja01288a032
J.N. Brønsted, Z. Phys. Chem., 102, 169 (1923).
L. Onsager, Chem. Rev., 13, 73 (1933); https://doi.org/10.1021/cr60044a006
R.A. Robinson and R.H. Stokes, Annu. Rev. Phys. Chem., 8, 37 (1957); https://doi.org/10.1146/annurev.pc.08.100157.000345
R.H. Stokes and R.A. Robinson, J. Am. Chem. Soc., 70, 1870 (1948); https://doi.org/10.1021/ja01185a065
R.E. Busby and V.S. Griffiths, J. Chem. Eng. Data, 10, 29 (1965); https://doi.org/10.1021/je60024a011
Y. Levin, Rep. Prog. Phys., 65, 1577 (2002); https://doi.org/10.1088/0034-4885/65/11/201
K.S. Pitzer, J. Phys. Chem., 77, 268 (1973); https://doi.org/10.1021/j100621a026
Y. Zhang and P.S. Cremer, Curr. Opin. Chem. Biol., 10, 658 (2006); https://doi.org/10.1016/j.cbpa.2006.09.020
D.A. McQuarrie, Quantum Chemistry, University Science Books: Sausalito, edn. 2 (2008).
S.C. Wang, Phys. Rev., 31, 579 (1928); https://doi.org/10.1103/PhysRev.31.579
H.M. James and A.S. Coolidge, J. Chem. Phys., 1, 825 (1933); https://doi.org/10.1063/1.1749252
M. Planck, Ann. Phys., 309, 553 (1901); https://doi.org/10.1002/andp.19013090310
M. Planck, The Theory of Heat Radiation, P. Blakiston’s Son & Co.: Philadelphia, USA (1914).
W. Wien, Ann. Phys., 294, 662 (1896); https://doi.org/10.1002/andp.18962940803
T.H. Boyer, Am. J. Phys., 86, 495 (2018); https://doi.org/10.1119/1.5034785
O. Passon and J. Grebe-Ellis, Eur. J. Phys., 38, 035404 (2017); https://doi.org/10.1088/1361-6404/aa6134
A. Einstein, Ann. Phys., 17, 132 (1905); [English transl.: Am. J. Phys., 33, 367 (1965)].
R. Eisberg and R. Resnick, Quantum Physics of Atoms, Molecules, Solids, Nuclei, and Particles, Wiley: New York, edn. 2 (1985).
N. Bohr, Lond. Edinb. Dublin Philos. Mag. J. Sci., 26, 1 (1913); https://doi.org/10.1080/14786441308634955
A. Pais, Niels Bohr’s Times: In Physics, Philosophy and Polity, Oxford University Press: Oxford (1991).
C.J. Davisson and L.H. Germer, Phys. Rev., 30, 705 (1927); https://doi.org/10.1103/PhysRev.30.705
L. de Broglie, Ann. Phys., 10, 22 (1925); https://doi.org/10.1051/anphys/192510030022
R.P. Feynman, R.B. Leighton and M. Sands, The Feynman Lectures on Physics, Addison–Wesley, Reading, vol. 3 (1965).
D.J. Griffiths, Introduction to Quantum Mechanics, Cambridge University Press, Cambridge, edn. 3 (2018).
L. Pauling, J. Am. Chem. Soc., 53, 1367 (1931); https://doi.org/10.1021/ja01355a027
E. Schrödinger, Phys. Rev., 28, 1049 (1926); https://doi.org/10.1103/PhysRev.28.1049
P. Atkins and R. Friedman, Molecular Quantum Mechanics, Oxford University Press, Oxford, edn. 5 (2011).
W. Heitler and F. London, Eur. Phys. J. A, 44, 455 (1927); https://doi.org/10.1007/BF01397394
G. Nicolis and I. Prigogine, Self-Organization in Nonequilibrium Systems: From Dissipative Structures to Order through Fluctuations, Wiley: New York (1977).
L. Pauling, The Nature of the Chemical Bond, Cornell University Press, Ithaca, edn. 3 (1960).
H. Haken, Synergetics: An Introduction, Springer, Berlin, edn, 3 (1983).
M. Tlidi, M.G. Clerc and K. Panajotov, Philos. Trans. R. Soc. A, 376, 2124 (2018).
A.B. Pechenkin, J. Biosci., 34, 365 (2009); https://doi.org/10.1007/s12038-009-0042-2
K.S. Kiprijanov, Ann. Phys., 528, 233 (2016); https://doi.org/10.1002/andp.201600025
L. Hegedüs, H.-D. Försterling, L. Onel, M. Wittmann and Z. Noszticzius, J. Phys. Chem. A, 110, 12839 (2006); https://doi.org/10.1021/jp064708x
J.J. Tyson, Biochem. J., 479, 185 (2022); https://doi.org/10.1042/BCJ20210370
R.J. Field and R.M. Noyes, J. Chem. Phys., 60, 1877 (1974); https://doi.org/10.1063/1.1681288
R.J. Field, E. Körös and R.M. Noyes, J. Am. Chem. Soc., 94, 8649 (1972); https://doi.org/10.1021/ja00780a001
A.M. Turing, Philos. Trans. R. Soc. B, 237, 37 (1952).
J.D. Murray, Mathematical Biology I: An Introduction, Springer: New York, edn. 3 (2002).
M.C. Cross and P.C. Hohenberg, Rev. Mod. Phys., 65, 851 (1993); https://doi.org/10.1103/RevModPhys.65.851
S. Kondo and T. Miura, Science, 329, 1616 (2010); https://doi.org/10.1126/science.1179047
P.K. Maini, T.E. Woolley, R.E. Baker, E.A. Gaffney and S.S. Lee, Interface Focus, 2, 487 (2012); https://doi.org/10.1098/rsfs.2011.0113
I.R. Epstein and J.A. Pojman, An Introduction to Nonlinear Chemical Dynamics: Oscillations, Waves, Patterns and Chaos, Oxford University Press: Oxford (1998).
I. Lengyel and I.R. Epstein, Proc. Natl. Acad. Sci. USA, 89, 3977 (1992); https://doi.org/10.1073/pnas.89.9.3977
Q. Ouyang and H.L. Swinney, Nature, 352, 610 (1991); https://doi.org/10.1038/352610a0
P. Ball, The Self-Made Tapestry: Pattern Formation in Nature, Oxford University Press: Oxford (1999).
P. De Kepper, V. Castets, E. Dulos and J. Boissonade, Physica D, 49, 161 (1991); https://doi.org/10.1016/0167-2789(91)90204-M
P.L. Luisi, The Emergence of Life: From Chemical Origins to Synthetic Biology, Cambridge University Press: Cambridge (2006).
K. Ruiz-Mirazo, C. Briones and A. de la Escosura, Chem. Rev., 114, 285 (2014); https://doi.org/10.1021/cr2004844
S.L. Miller, Science, 117, 528 (1953); https://doi.org/10.1126/science.117.3046.528
W. Martin, J. Baross, D. Kelley and M.J. Russell, Nat. Rev. Microbiol., 6, 805 (2008); https://doi.org/10.1038/nrmicro1991.
S. Pizzarello and E. Shock, Cold Spring Harb. Perspect. Biol., 2, a002105 (2010).
J.-M. Lehn, Supramolecular Chemistry: Concepts and Perspectives, Wiley-VCH: Weinheim (1995).
D.W. Deamer and J.P. Dworkin, Top. Curr. Chem., 259, 1 (2005); https://doi.org/10.1007/b136806
K. Kruger, P.J. Grabowski, A.J. Zaug, J. Sands, D.E. Gottschling and T.R. Cech, Cell, 31, 147 (1982); https://doi.org/10.1016/0092-8674(82)90414-7
W. Gilbert, Nature, 319, 618 (1986); https://doi.org/10.1038/319618a0
M.W. Powner, B. Gerland and J.D. Sutherland, Nature, 459, 239 (2009); https://doi.org/10.1038/nature08013
G.F. Joyce, Nature, 418, 214 (2002); https://doi.org/10.1038/418214a
E.V. Koonin and A.S. Novozhilov, IUBMB Life, 61, 99 (2009); https://doi.org/10.1002/iub.146
J.W. Szostak, D.P. Bartel and P.L. Luisi, Nature, 409, 387 (2001); https://doi.org/10.1038/35053176
G. Ashkenasy, T.M. Hermans, S. Otto and A.F. Taylor, Chem. Soc. Rev., 46, 2543 (2017); https://doi.org/10.1039/C7CS00117G
D.G. Blackmond, Cold Spring Harb. Perspect. Biol., 11, a032540 (2019); https://doi.org/10.1101/cshperspect.a032540
K. Adamala and J.W. Szostak, Nat. Chem., 5, 495 (2013); https://doi.org/10.1038/nchem.1650
G. Nicolis and I. Prigogine, Self-Organization in Nonequilibrium Systems: From Dissipative Structures to Order Through Fluctuations, Wiley-Interscience, New York (1977).
S.A. Kauffman, The Origins of Order: Self-Organization and Selection in Evolution, Oxford University Press: Oxford (1993).
P.W.K. Rothemund, Nature, 440, 297 (2006); https://doi.org/10.1038/nature04586
M.A.C. Stuart, W.T.S. Huck, J. Genzer, M. Müller, C. Ober, M. Stamm, G.B. Sukhorukov, I. Szleifer, V.V. Tsukruk, M. Urban, F. Winnik, S. Zauscher, I. Luzinov and S. Minko, Nat. Mater., 9, 101 (2010); https://doi.org/10.1038/nmat2614
S. Rasmussen, L. Chen, M. Nilsson and S. Abe, Artif. Life, 9, 269 (2003); https://doi.org/10.1162/106454603322392479
G. Tom, S.P. Schmid, S.G. Baird, Y. Cao, K. Darvish, H. Hao, S. Lo, S. Pablo-García, E.M. Rajaonson, M. Skreta, N. Yoshikawa, S. Corapi, G.D. Akkoc, F. Strieth-Kalthoff, M. Seifrid and A. Aspuru-Guzik, Chem. Rev., 124, 9633 (2024); https://doi.org/10.1021/acs.chemrev.4c00055
J.M. Granda, L. Donina, V. Dragone, D.L. Long and L. Cronin, Nature, 559, 377 (2018); https://doi.org/10.1038/s41586-018-0307-8