Copyright (c) 2026 Vikas Patil, D. V. Mane

This work is licensed under a Creative Commons Attribution 4.0 International License.
Effect of Crystallinity and Optical Tuning in Sonochemically Synthesised ZnO Nanoparticles for Enhanced Photocatalytic Efficiency
Corresponding Author(s) : Vikas G. Patil
Asian Journal of Chemistry,
Vol. 38 No. 2 (2026): Vol 38 Issue 2, 2026
Abstract
In this work, phase-pure ZnO nanoparticles were synthesized via an ultrasonic-assisted sonochemical route and systematically characterized to elucidate their structural, thermal, optical, and photocatalytic properties. Thermogravimetric analysis revealed a minor mass loss (~3.5%) below 400 ºC, attributed to the removal of surface-adsorbed organic species, confirming the subsequent thermal stability of ZnO NPs. X-ray diffraction analysis confirmed the formation of a single-phase hexagonal wurtzite structure (space group P63mc) with a lattice parameter a = 3.517 Å and an average crystallite size of 21.6 nm, as estimated by the Debye-Scherrer equation. Energy-dispersive X-ray spectroscopy verified the stoichiometric Zn:O composition, with trace carbon arising from residual surface species. Scanning and transmission electron microscopy revealed quasi-spherical polycrystalline aggregates with a mean particle size of 48.22 nm. High-resolution TEM analysis displayed well-defined lattice fringes with interplanar spacings of 0.28 nm (100) and 0.26 nm (002), indicating the presence of single-crystalline domains within the aggregates. FT-IR spectroscopy confirmed residual organic functional groups alongside characteristic Zn–O vibrational modes in the 848-404 cm-1 range. UV-visible spectroscopy demonstrated a widened direct bandgap of 3.27 eV, indicative of quantum confinement effects. Photocatalytic performance evaluated under 366 nm UV irradiation showed efficient degradation of methylene blue (10 ppm), achieving over 50% removal within 160 min and following pseudo-first-order kinetics. The combined effects of high crystallinity, bandgap modulation and surface reactivity underscore the potential of these ZnO nanoparticles as effective photocatalysts for advanced oxidation processes in environmental remediation.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S. Chatterjee, P. Bhanja, D. Ghosh, P. Kumar, S. Kanti Das, S. Dalapati and A. Bhaumik, ChemSusChem, 14, 408 (2021); https://doi.org/10.1002/cssc.202002136
- M. Xue, F. Li, W. Peng, Q. Zhu and Y. He, Nanoenergy Adv., 3, 401 (2023); https://doi.org/10.3390/nanoenergyadv3040020
- M. Montero-Muñoz, J.E. Ramos-Ibarra, J.E. Rodríguez-Páez, M.D. Teodoro, G.E. Marques, A.R. Sanabria, P.C. Cajas, C.A. Páez, B. Heinrichs and J.A.H. Coaquira, Appl. Surf. Sci., 448, 646 (2018); https://doi.org/10.1016/j.apsusc.2018.04.105
- J. Wang, R. Chen, L. Xiang and S. Komarneni, Ceram. Int., 44, 7357 (2018); https://doi.org/10.1016/j.ceramint.2018.02.013
- B. Li, L. Ren, D. Jiang, M. Jia, M. Zhang, G. Xu, Y. Sun, L. Hou, C. Yuan and Y. Yuan, Next Energy, 7, 100222 (2025); https://doi.org/10.1016/j.nxener.2024.100222
- S.A. Sobha, J. Johnson and K.P. Abhina, J. Alloys Compd., 1037, 182365 (2025); https://doi.org/10.1016/j.jallcom.2025.182365
- A. Alsalme, K.M. Elmoneim, N.N. Mohammed, K. Mohamed, M. Abdel-Messih, A. Sultan and M. Ahmed, Ceram. Int., 50, 50622 (2024); https://doi.org/10.1016/j.ceramint.2024.09.407
- Z. Li, J. Dong, H. Zhang, Y. Zhang, H. Wang, X. Cui and Z. Wang, Nanoscale Adv., 3, 41 (2021); https://doi.org/10.1039/D0NA00753F
- S. Shenoy, S. Ahmed, I.M. Lo, S. Singh and K. Sridharan, Mater. Res. Bull., 140, 111290 (2021); https://doi.org/10.1016/j.materresbull.2021.111290
- S. Thakur and S.K. Mandal, Mater. Adv., 2, 511 (2021); https://doi.org/10.1039/D0MA00781A
- A. Serrano-Lázaro, K. Portillo-Cortez, M. B. de la Mora Mojica and J. C. Durán-Álvarez, Nanomaterials, 15, 1627 (2025); https://doi.org/10.3390/nano15211627
- S.J. Armaković, S. Armaković, A. Bilić and M.M. Savanović, Catalysts, 15, 793 (2025); https://doi.org/10.3390/catal15080793
- L.-C. Cheng, S. Brahma, J.-L. Huang and C.-P. Liu, Mater. Sci. Semicond. Process., 146, 106703 (2022); https://doi.org/10.1016/j.mssp.2022.106703.
- W. Ouyang, J. Chen, Z. Shi and X. Fang, Appl. Phys. Rev., 8, 031315 (2021);https://doi.org/10.1063/5.0058482
- M.N. Rezaie, S. Mohammadnejad and S. Ahadzadeh, Opt. Laser Technol., 138, 106896 (2021); https://doi.org/10.1016/j.optlastec.2020.106896
- B. Barman, S.K. Swami and V. Dutta, Mater. Sci. Semicond. Process., 129, 105801 (2021); https://doi.org/10.1016/j.mssp.2021.105801
- J. Rodrigues, S.O. Pereira, J. Zanoni, C. Rodrigues, M. Brás, F.M. Costa and T. Monteiro, Chemosensors, 10, 39 (2022); https://doi.org/10.3390/chemosensors10020039
- W. Wanas, S.A. Abd El-Kaream, S. Ebrahim, M. Soliman and M. Karim, Sci. Rep., 13, 27 (2023); https://doi.org/10.1038/s41598-022-27111-z
- R. Sha, A. Basak, P.C. Maity and S. Badhulika, Sens. Actuators Rep., 4, 100098 (2022); https://doi.org/10.1016/j.snr.2022.100098
- R.K. Pandey, J. Dutta, S. Brahma, B. Rao and C.-P. Liu, J. Phys Mater., 4, 044011 (2021); https://doi.org/10.1088/2515-7639/ac130a
- C. Sun, J. Zhang, Y. Zhang, F. Zhao, J. Xie, Z. Liu, J. Zhuang, N. Zhang, W. Ren and Z.-G. Ye, Appl. Surf. Sci., 562, 150126 (2021); https://doi.org/10.1016/j.apsusc.2021.150126
- P. Mosallanezhad, H. Nazockdast, Z. Ahmadi and A. Rostami, Front. Bioeng. Biotechnol., 10, 1027351 (2022); https://doi.org/10.3389/fbioe.2022.1027351
- K.G. Krishna, G. Umadevi, S. Parne and N. Pothukanuri, J. Mater. Chem. C Mater. Opt. Electron. Devices, 11, 3906 (2023); https://doi.org/10.1039/D2TC04690C
- S. Mondal and B. Bhattacharjee, The Scientific Temper, 15, 2460 (2024); https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.3.01
- Z. Wang, M.R. Bockstaller and K. Matyjaszewski, ACS Mater. Lett., 3, 599 (2021); https://doi.org/10.1021/acsmaterialslett.1c00145
- S.S. Low, M. Yew, C.N. Lim, W.S. Chai, L.E. Low, S. Manickam, B.T. Tey and P.L. Show, Ultrason. Sonochem., 82, 105887 (2022); https://doi.org/10.1016/j.ultsonch.2021.105887
- J. Rami, C. Patel, C. Patel and M. Patel, Mater. Today Proc., 43, 655 (2021); https://doi.org/10.1016/j.matpr.2020.12.554
- I.A. Channa, J. Ashfaq, S.J. Gilani, A.A. Shah, A.D. Chandio and M.N.B. Jumah, Coatings, 12, 897 (2022); https://doi.org/10.3390/coatings12070897
- T.T. Dao, T.L.N. Vo, A.T. Duong, D.L. Nguyen, V.S. Luong and H.T. Nguyen, J. Sol-Gel Sci. Technol., 115, 1391 (2025); https://doi.org/10.1007/s10971-025-06828-z
- T. Asaulyuk, Y. Saribyekova, O. Semeshko and I. Kulish, Herald Khmelnytskyi Natl. Univ. Tech. Sci., 311, 35 (2022); https://doi.org/10.31891/2307-5732-2022-311-4-35-41
- Y. Sakamoto, T.W. Kim, R. Ryoo and O. Terasaki, Angew. Chem. Int. Ed., 43, 5231 (2004); https://doi.org/10.1002/anie.200460449
- A. Shrivastava and A. Shrivastava, AIP Conf. Proc., 2352, 020024 (2021); https://doi.org/10.1063/5.0052721
- H. Shashidharagowda and S.N. Mathad, Mater. Sci. Energy Technol., 3, 201 (2020); https://doi.org/10.1016/j.mset.2019.10.008
- A. Spoială, C.-I. Ilie, R.-D. Trușcă, O.-C. Oprea, V.-A. Surdu, B.Ș. Vasile, A. Ficai, D. Ficai, E. Andronescu and L.-M. Dițu, Materials, 14, 4747 (2021); https://doi.org/10.3390/ma14164747
- A.C. Mohan and B. Renjanadevi, Procedia Technol., 24, 761 (2016); https://doi.org/10.1016/j.protcy.2016.05.078
- Y. Zhu and Y. Zhou, Appl. Phys., A Mater. Sci. Process., 92, 275 (2008); https://doi.org/10.1007/s00339-008-4533-z
- A.C. Janaki, E. Sailatha and S. Gunasekaran, Spectrochim. Acta A Mol. Biomol. Spectrosc., 144, 17 (2015); https://doi.org/10.1016/j.saa.2015.02.041
- P. Labhane, V. Huse, L. Patle, A. Chaudhari and G. Sonawane, J. Mater. Sci. Chem. Eng., 3, 39 (2015).
- T. Thangeeswari, A.T. George and A.A. Kumar, Indian J. Sci. Technol., 9, 1 (2016); https://doi.org/10.17485/ijst/2016/v9i1/85776
- S. Elbasuney, G.S. El-Sayyad, H. Tantawy and A.H. Hashem, RSC Adv., 11, 25961 (2021); https://doi.org/10.1039/D1RA04542C
- M. Kandasamy, S. Murugesan, M. Selvaraj and M.M. Alam, Ceram. Int., 48, 6037 (2022); https://doi.org/10.1016/j.ceramint.2021.11.140
- S.K. Abdel-Aal and A.S. Abdel-Rahman, J. Electron. Mater., 48, 1686 (2019); https://doi.org/10.1007/s11664-018-06916-7
- V. Platonov, N. Malinin, R. Vasiliev and M. Rumyantseva, Chemosensors, 11, 227 (2023); https://doi.org/10.3390/chemosensors11040227
- Z. Song, T.A. Kelf, W.H. Sanchez, M.S. Roberts, J. Rička, M. Frenz and A.V. Zvyagin, Biomed. Opt. Express, 2, 3321 (2011); https://doi.org/10.1364/BOE.2.003321
- T.-J. Whang, M.-T. Hsieh and H.-H. Chen, Appl. Surf. Sci., 258, 2796 (2012); https://doi.org/10.1016/j.apsusc.2011.10.134
- N. Jain, A. Bhargava and J. Panwar, Chem. Eng. J., 243, 549 (2014); https://doi.org/10.1016/j.cej.2013.11.085
- J. Lu, I. Batjikh, J. Hurh, Y. Han, H. Ali, R. Mathiyalagan, C. Ling, J.C. Ahn and D.C. Yang, Optik, 182, 980 (2019); https://doi.org/10.1016/j.ijleo.2018.12.016
References
S. Chatterjee, P. Bhanja, D. Ghosh, P. Kumar, S. Kanti Das, S. Dalapati and A. Bhaumik, ChemSusChem, 14, 408 (2021); https://doi.org/10.1002/cssc.202002136
M. Xue, F. Li, W. Peng, Q. Zhu and Y. He, Nanoenergy Adv., 3, 401 (2023); https://doi.org/10.3390/nanoenergyadv3040020
M. Montero-Muñoz, J.E. Ramos-Ibarra, J.E. Rodríguez-Páez, M.D. Teodoro, G.E. Marques, A.R. Sanabria, P.C. Cajas, C.A. Páez, B. Heinrichs and J.A.H. Coaquira, Appl. Surf. Sci., 448, 646 (2018); https://doi.org/10.1016/j.apsusc.2018.04.105
J. Wang, R. Chen, L. Xiang and S. Komarneni, Ceram. Int., 44, 7357 (2018); https://doi.org/10.1016/j.ceramint.2018.02.013
B. Li, L. Ren, D. Jiang, M. Jia, M. Zhang, G. Xu, Y. Sun, L. Hou, C. Yuan and Y. Yuan, Next Energy, 7, 100222 (2025); https://doi.org/10.1016/j.nxener.2024.100222
S.A. Sobha, J. Johnson and K.P. Abhina, J. Alloys Compd., 1037, 182365 (2025); https://doi.org/10.1016/j.jallcom.2025.182365
A. Alsalme, K.M. Elmoneim, N.N. Mohammed, K. Mohamed, M. Abdel-Messih, A. Sultan and M. Ahmed, Ceram. Int., 50, 50622 (2024); https://doi.org/10.1016/j.ceramint.2024.09.407
Z. Li, J. Dong, H. Zhang, Y. Zhang, H. Wang, X. Cui and Z. Wang, Nanoscale Adv., 3, 41 (2021); https://doi.org/10.1039/D0NA00753F
S. Shenoy, S. Ahmed, I.M. Lo, S. Singh and K. Sridharan, Mater. Res. Bull., 140, 111290 (2021); https://doi.org/10.1016/j.materresbull.2021.111290
S. Thakur and S.K. Mandal, Mater. Adv., 2, 511 (2021); https://doi.org/10.1039/D0MA00781A
A. Serrano-Lázaro, K. Portillo-Cortez, M. B. de la Mora Mojica and J. C. Durán-Álvarez, Nanomaterials, 15, 1627 (2025); https://doi.org/10.3390/nano15211627
S.J. Armaković, S. Armaković, A. Bilić and M.M. Savanović, Catalysts, 15, 793 (2025); https://doi.org/10.3390/catal15080793
L.-C. Cheng, S. Brahma, J.-L. Huang and C.-P. Liu, Mater. Sci. Semicond. Process., 146, 106703 (2022); https://doi.org/10.1016/j.mssp.2022.106703.
W. Ouyang, J. Chen, Z. Shi and X. Fang, Appl. Phys. Rev., 8, 031315 (2021);https://doi.org/10.1063/5.0058482
M.N. Rezaie, S. Mohammadnejad and S. Ahadzadeh, Opt. Laser Technol., 138, 106896 (2021); https://doi.org/10.1016/j.optlastec.2020.106896
B. Barman, S.K. Swami and V. Dutta, Mater. Sci. Semicond. Process., 129, 105801 (2021); https://doi.org/10.1016/j.mssp.2021.105801
J. Rodrigues, S.O. Pereira, J. Zanoni, C. Rodrigues, M. Brás, F.M. Costa and T. Monteiro, Chemosensors, 10, 39 (2022); https://doi.org/10.3390/chemosensors10020039
W. Wanas, S.A. Abd El-Kaream, S. Ebrahim, M. Soliman and M. Karim, Sci. Rep., 13, 27 (2023); https://doi.org/10.1038/s41598-022-27111-z
R. Sha, A. Basak, P.C. Maity and S. Badhulika, Sens. Actuators Rep., 4, 100098 (2022); https://doi.org/10.1016/j.snr.2022.100098
R.K. Pandey, J. Dutta, S. Brahma, B. Rao and C.-P. Liu, J. Phys Mater., 4, 044011 (2021); https://doi.org/10.1088/2515-7639/ac130a
C. Sun, J. Zhang, Y. Zhang, F. Zhao, J. Xie, Z. Liu, J. Zhuang, N. Zhang, W. Ren and Z.-G. Ye, Appl. Surf. Sci., 562, 150126 (2021); https://doi.org/10.1016/j.apsusc.2021.150126
P. Mosallanezhad, H. Nazockdast, Z. Ahmadi and A. Rostami, Front. Bioeng. Biotechnol., 10, 1027351 (2022); https://doi.org/10.3389/fbioe.2022.1027351
K.G. Krishna, G. Umadevi, S. Parne and N. Pothukanuri, J. Mater. Chem. C Mater. Opt. Electron. Devices, 11, 3906 (2023); https://doi.org/10.1039/D2TC04690C
S. Mondal and B. Bhattacharjee, The Scientific Temper, 15, 2460 (2024); https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.3.01
Z. Wang, M.R. Bockstaller and K. Matyjaszewski, ACS Mater. Lett., 3, 599 (2021); https://doi.org/10.1021/acsmaterialslett.1c00145
S.S. Low, M. Yew, C.N. Lim, W.S. Chai, L.E. Low, S. Manickam, B.T. Tey and P.L. Show, Ultrason. Sonochem., 82, 105887 (2022); https://doi.org/10.1016/j.ultsonch.2021.105887
J. Rami, C. Patel, C. Patel and M. Patel, Mater. Today Proc., 43, 655 (2021); https://doi.org/10.1016/j.matpr.2020.12.554
I.A. Channa, J. Ashfaq, S.J. Gilani, A.A. Shah, A.D. Chandio and M.N.B. Jumah, Coatings, 12, 897 (2022); https://doi.org/10.3390/coatings12070897
T.T. Dao, T.L.N. Vo, A.T. Duong, D.L. Nguyen, V.S. Luong and H.T. Nguyen, J. Sol-Gel Sci. Technol., 115, 1391 (2025); https://doi.org/10.1007/s10971-025-06828-z
T. Asaulyuk, Y. Saribyekova, O. Semeshko and I. Kulish, Herald Khmelnytskyi Natl. Univ. Tech. Sci., 311, 35 (2022); https://doi.org/10.31891/2307-5732-2022-311-4-35-41
Y. Sakamoto, T.W. Kim, R. Ryoo and O. Terasaki, Angew. Chem. Int. Ed., 43, 5231 (2004); https://doi.org/10.1002/anie.200460449
A. Shrivastava and A. Shrivastava, AIP Conf. Proc., 2352, 020024 (2021); https://doi.org/10.1063/5.0052721
H. Shashidharagowda and S.N. Mathad, Mater. Sci. Energy Technol., 3, 201 (2020); https://doi.org/10.1016/j.mset.2019.10.008
A. Spoială, C.-I. Ilie, R.-D. Trușcă, O.-C. Oprea, V.-A. Surdu, B.Ș. Vasile, A. Ficai, D. Ficai, E. Andronescu and L.-M. Dițu, Materials, 14, 4747 (2021); https://doi.org/10.3390/ma14164747
A.C. Mohan and B. Renjanadevi, Procedia Technol., 24, 761 (2016); https://doi.org/10.1016/j.protcy.2016.05.078
Y. Zhu and Y. Zhou, Appl. Phys., A Mater. Sci. Process., 92, 275 (2008); https://doi.org/10.1007/s00339-008-4533-z
A.C. Janaki, E. Sailatha and S. Gunasekaran, Spectrochim. Acta A Mol. Biomol. Spectrosc., 144, 17 (2015); https://doi.org/10.1016/j.saa.2015.02.041
P. Labhane, V. Huse, L. Patle, A. Chaudhari and G. Sonawane, J. Mater. Sci. Chem. Eng., 3, 39 (2015).
T. Thangeeswari, A.T. George and A.A. Kumar, Indian J. Sci. Technol., 9, 1 (2016); https://doi.org/10.17485/ijst/2016/v9i1/85776
S. Elbasuney, G.S. El-Sayyad, H. Tantawy and A.H. Hashem, RSC Adv., 11, 25961 (2021); https://doi.org/10.1039/D1RA04542C
M. Kandasamy, S. Murugesan, M. Selvaraj and M.M. Alam, Ceram. Int., 48, 6037 (2022); https://doi.org/10.1016/j.ceramint.2021.11.140
S.K. Abdel-Aal and A.S. Abdel-Rahman, J. Electron. Mater., 48, 1686 (2019); https://doi.org/10.1007/s11664-018-06916-7
V. Platonov, N. Malinin, R. Vasiliev and M. Rumyantseva, Chemosensors, 11, 227 (2023); https://doi.org/10.3390/chemosensors11040227
Z. Song, T.A. Kelf, W.H. Sanchez, M.S. Roberts, J. Rička, M. Frenz and A.V. Zvyagin, Biomed. Opt. Express, 2, 3321 (2011); https://doi.org/10.1364/BOE.2.003321
T.-J. Whang, M.-T. Hsieh and H.-H. Chen, Appl. Surf. Sci., 258, 2796 (2012); https://doi.org/10.1016/j.apsusc.2011.10.134
N. Jain, A. Bhargava and J. Panwar, Chem. Eng. J., 243, 549 (2014); https://doi.org/10.1016/j.cej.2013.11.085
J. Lu, I. Batjikh, J. Hurh, Y. Han, H. Ali, R. Mathiyalagan, C. Ling, J.C. Ahn and D.C. Yang, Optik, 182, 980 (2019); https://doi.org/10.1016/j.ijleo.2018.12.016