Copyright (c) 2019 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Organic Boronate Affinity Sorbent for Capture of cis-Diol Containing Compounds
Corresponding Author(s) : Eman Alzahrani
Asian Journal of Chemistry,
Vol. 31 No. 9 (2019): Vol 31 Issue 9
Abstract
Boronate affinity chromatography (BAC) is argued to be a critical tool in specific capture and separation of cis-diol containing compounds. In present study, organic boronate affinity monolith poly(3-acrylamido phenylboronic acid-co-ethylene dimethacrylate) (AAPBA-co-EDMA) is prepared through one-step in situ polymerization procedure within a micropipette through the application of a pre-polymerization mixture which contains functional monomer (3-acrylamido phenylboronic acid), cross-linker (ethylene dimethacrylate), porogenic solvent (methanol with poly ethylene glycol) and initiator (2,2-dimethoxy-2-phenyl-acetophenone). Following the optimization of time exposure to UV lamp with 365 nm, the macroporous organic boronate monolith was selected. Several approaches including SEM and BET analysis, FT-IR spectroscopy and measuring contact angle were applied in the characterization of the morphology of the monolith. Several cis-diol compounds that include catechol and galactose are applied in the assessment of the boronate affinity of the organic monolithic material. Additionally, the capture of glucose from urine sample is also conducted. The basic principle of the approach is that boronic acid forms covalent bond with cis-diols in basic solutions whereas the ester bonds are dissociated under acidic media. By using the study results, monolith demonstrate good selectivity towards cis-diol containing compounds. Due to the hydrophilic property of monolith, the affinity chromatography monolith can be performed for several cis-diol compounds including glycoproteins and nucleosides. Also, fabrication of the organic boronate monolithic in microfluidic equipment is essential in facilitating the extraction of boronate affinity using small-volume samples.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- A. Ivanov, N.M. Solodukhina, L. Nilsson, M.P. Nikitin, P.I. Nikitin, V.P. Zubov and A.A. Vikhrov, Polym. Sci. Ser. A, 54, 1 (2012); https://doi.org/10.1134/S0965545X12010026.
- H. Zhu, H. Yao, K. Xia, J. Liu, X. Yin, W. Zhang and J. Pan, Chem. Eng. J., 346, 317 (2018); https://doi.org/10.1016/j.cej.2018.03.170.
- J. Turková, Bioaffinity chromatography, Elsevier, vol. 55 (1993).
- I. Abreu-Sánchez, New Targets in Plant Boron Deficiency Response: N-Glycosylation and Regulation of Root Development (2016).
- S. Jin, W. Zhang, Q. Yang, L. Dai and P. Zhou, Talanta, 178, 710 (2018); https://doi.org/10.1016/j.talanta.2017.10.011.
- D. Li, Y. Chen and Z. Liu, Chem. Soc. Rev., 44, 8097 (2015); https://doi.org/10.1039/C5CS00013K.
- Y. Zhang, H. Yin and H. Lu, Glycoconj. J., 29, 249 (2012); https://doi.org/10.1007/s10719-012-9398-x.
- Y. Zhang, X. Xie, X. Zhao, F. Tian, J. Lv, W. Ying and X. Qian, J. Proteomics, 170, 14 (2018); https://doi.org/10.1016/j.jprot.2017.09.014.
- H. Xiao, F. Sun, S. Suttapitugsakul and R. Wu, Mass Spectrom. Rev., (2019); https://doi.org/10.1002/mas.21586.
- D. Medina-Cano, E. Ucuncu, L.S. Nguyen, M. Nicouleau, J. Lipecka, J.-C. Bizot, C. Thiel, F. Foulquier, N. Lefort, C. Faivre-Sarrailh, L. Colleaux, I.C. Guerrera and V. Cantagrel, eLife, 7, e38309 (2018); https://doi.org/10.7554/eLife.38309.
- D.E. McCoy, T. Feo, T.A. Harvey and R.O. Prum, Nat. Commun., 9, 1 (2018); https://doi.org/10.1038/s41467-017-02088-w.
- H. Li and Z. Liu, TrAC Trends Anal. Chem., 37, 148 (2012); https://doi.org/10.1016/j.trac.2012.03.010.
- D.F. Zielinska, F. Gnad, J.R. Wiœniewski and M. Mann, Cell, 141, 897 (2010); https://doi.org/10.1016/j.cell.2010.04.012.
- J.S. Fossey, F. D’Hooge, J.M.H. van den Elsen, M.P. Pereira Morais, S.I. Pascu, S.D. Bull, F. Marken, A.T.A. Jenkins, Y.-B. Jiang and T.D. James, Chem. Rec., 12, 464 (2012); https://doi.org/10.1002/tcr.201200006.
- E. Alzahrani and K. Welham, Analyst, 136, 4321 (2011); https://doi.org/10.1039/c1an15447h.
- E. Alzahrani and K. Welham, Anal. Chim. Acta, 798, 40 (2013); https://doi.org/10.1016/j.aca.2013.08.035.
- E. Alzahrani and K. Welham, Analyst, 137, 4751 (2012); https://doi.org/10.1039/c2an16018h.
- R. Nishiyabu, Y. Kubo, T.D. James and J.S. Fossey, Chem. Commun., 47, 1106 (2011); https://doi.org/10.1039/c0cc02920c.
- X.-C. Liu and W.H. Scouten, Boronate Affinity Chromatography, In: Affinity Chromatography, Springer, pp. 119-128 (2000).
- X. Ling and Z. Chen, Anal. Bioanal. Chem., 410, 501 (2018); https://doi.org/10.1007/s00216-017-0740-9.
- L. Ren, Z. Liu, M. Dong, M. Ye and H. Zou, J. Chromatogr. A, 1216, 4768 (2009); https://doi.org/10.1016/j.chroma.2009.04.036.
- G. Wulff, Pure Appl. Chem., 54, 2093 (1982); https://doi.org/10.1351/pac198254112093.
- G. Wulff, M. Lauer and H. Böhnke, Angew. Chem. Int. Ed. Engl., 23, 741 (1984); https://doi.org/10.1002/anie.198407411.
- S. Jin, L. Liu and P. Zhou, Mikrochim. Acta, 185, 308 (2018); https://doi.org/10.1007/s00604-018-2824-4.
- A. Matsumoto, K. Yamamoto, R. Yoshida, K. Kataoka, T. Aoyagi and Y. Miyahara, Chem. Commun., 46, 2203 (2010); https://doi.org/10.1039/b920319b.
- M. Dowlut and D.G. Hall, J. Am. Chem. Soc., 128, 4226 (2006); https://doi.org/10.1021/ja057798c.
- A. Pal, M. Bérubé and D.G. Hall, Angew. Chem. Int. Ed., 49, 1492 (2010); https://doi.org/10.1002/anie.200906620.
- L. Ren, Y. Liu, M. Dong and Z. Liu, J. Chromatogr. A, 1216, 8421 (2009); https://doi.org/10.1016/j.chroma.2009.10.014.
- M. Chen, Y. Lu, Q. Ma, L. Guo and Y.-Q. Feng, Analyst, 134, 2158 (2009); https://doi.org/10.1039/b909581k.
- Y. Xu, Z. Wu, L. Zhang, H. Lu, P. Yang, P.A. Webley and D. Zhao, Anal. Chem., 81, 503 (2009); https://doi.org/10.1021/ac801912t.
- J. Liu, K. Yang, Y. Qu, S. Li, Q. Wu, Z. Liang, L. Zhang and Y. Zhang, Chem. Commun., 51, 3896 (2015); https://doi.org/10.1039/C4CC10004B.
- M. Khanal, T. Vausselin, A. Barras, O. Bande, K. Turcheniuk, M. Benazza, V. Zaitsev, C.M. Teodorescu, R. Boukherroub, A. Siriwardena, J. Dubuisson and S. Szunerits, ACS Appl. Mater. Interfaces, 5, 12488 (2013); https://doi.org/10.1021/am403770q.
- O.G. Potter, M.C. Breadmore and E.F. Hilder, Analyst, 131, 1094 (2006); https://doi.org/10.1039/b609051f.
- C. Wu, Y. Liang, Q. Zhao, Y. Qu, S. Zhang, Q. Wu, Z. Liang, L. Zhang and Y. Zhang, Chem. Eur. J., 20, 8737 (2014); https://doi.org/10.1002/chem.201402787.
- D. Li, Y. Li, X. Li, Z. Bie, X. Pan, Q. Zhang and Z. Liu, J. Chromatogr. A, 1384, 88 (2015); https://doi.org/10.1016/j.chroma.2015.01.050.
- X.-J. Li, M. Jia, Y.-X. Zhao, Z.-S. Liu and H. Akber Aisa, J. Chromatogr. A, 1438, 171 (2016); https://doi.org/10.1016/j.chroma.2016.02.031.
- X. Hou, W. Huang, F. Zhu, F. Geng and M. Tian, Anal. Methods, 11, 317 (2019); https://doi.org/10.1039/C8AY02311E.
- W. Zhang, W. Liu, P. Li, X. Xiao, H. Wang and B. Tang, Angew. Chem. Int. Ed., 53, 12489 (2014); https://doi.org/10.1002/anie.201405634.
- W. Huang, X. Hou, Y. Tong and M. Tian, RSC Adv., 9, 5394 (2019); https://doi.org/10.1039/C9RA00511K.
- E. Alzahrani, Int. J. Adv. Sci. Technical Res.., 1, 115 (2015).
- Q. Li, C. Lü and Z. Liu, J. Chromatogr. A, 1305, 123 (2013); https://doi.org/10.1016/j.chroma.2013.07.007.
- D. Sýkora, P. Rezanka, K. Záruba and V. Král, J. Sep. Sci., 42, 89 (2019); https://doi.org/10.1002/jssc.201801048.
- X. Wang, N. Xia and L. Liu, Int. J. Mol. Sci., 14, 20890 (2013); https://doi.org/10.3390/ijms141020890.
- R. Wu, H. Zou, H. Fu, W. Jin and M. Ye, Electrophoresis, 23, 1239 (2002); https://doi.org/10.1002/1522-2683(200205)23:9<1239::AIDELPS1239>3.0.CO;2-X.
- E. Alzahrani, Int. J. Adv. Sci. Technical Res., 1, 209 (2015).
- E. Alzahrani, Int. J. Adv. Eng. Nano Technol., 2, 13 (2014).
- E. Alzahrani, Eng. Technol., 1, 138 (2015).
- K. Lacina, P. Skládal and T.D. James, Chem. Cent. J., 8, 60 (2014); https://doi.org/10.1186/s13065-014-0060-5.
- M.B. Espina-Benitez, J. Randon, C. Demesmay and V. Dugas, Sep. Purif. Rev., 47, 214 (2018); https://doi.org/10.1080/15422119.2017.1365085.
- H. Zheng, H. Lin, J. Sui, J. Yin, B. Wang, T.R. Pavase and L. Cao, Chem. Select, 4, 623 (2019); https://doi.org/10.1002/slct.201801261.
- I. Perçin, N. Idil and A. Denizli, Colloids Surf. B Biointerfaces, 162, 146 (2018); https://doi.org/10.1016/j.colsurfb.2017.11.044.
- Y. Liu, L. Ren and Z. Liu, Chem. Commun., 47, 5067 (2011); https://doi.org/10.1039/c0cc05675h.
- Z. Liu and H. He, Acc. Chem. Res., 50, 2185 (2017); https://doi.org/10.1021/acs.accounts.7b00179.
- A. Jönsson, R.R. Svejdal, N. Bøgelund, T.T.T.N. Nguyen, H. Flindt, J.P. Kutter, K.D. Rand and J.P. Lafleur, Anal. Chem., 89, 4573 (2017); https://doi.org/10.1021/acs.analchem.6b05103.
- K. Sitthisinthu, Small Molecule Analysis on a Modified Hydrophillic Interaction Liquid Chromatography (HILIC) Monolith Using MicroHPLC and Capillary Electrochromatography (CEC), King’s College: London (2015).
- H. Li, H. Wang, Y. Liu and Z. Liu, Chem. Commun., 48, 4115 (2012); https://doi.org/10.1039/c2cc30230f.
- F. Svec and C.G. Huber, Monolithic Materials: Promises, Challenges, Achievements, ACS Publications (2006).
- Á. Sáfrány, B. Beiler, K. László and F. Svec, Polymer, 46, 2862 (2005); https://doi.org/10.1016/j.polymer.2005.02.024.
- J.L. DoresSousa, A. Fernández-Pumarega, J. De Vos, M. Lämmerhofer, G. Desmet and S. Eeltink, J. Sep. Sci., 42, 522 (2019); https://doi.org/10.1002/jssc.201801092.
- Z. Zajickova and I. Spánik, J. Sep. Sci., 42, 999 (2019); https://doi.org/10.1002/jssc.201801071.
- M. Vázquez and B. Paull, Anal. Chim. Acta, 668, 100 (2010); https://doi.org/10.1016/j.aca.2010.04.033.
- K. Chuda, J. Jasik, J. Carlier, P. Tabourier, C. Druon and X. Coqueret, Radiat. Phys. Chem., 75, 26 (2006); https://doi.org/10.1016/j.radphyschem.2005.06.007.
- W.-L. Fang, L.-J. Xia, X. Huang, X.-F. Guo, J. Ding, H. Wang and Y.-Q. Feng, Chromatographia, 81, 1381 (2018); https://doi.org/10.1007/s10337-018-3592-3.
- Y. Zhang, M. Mei, X. Huang and D. Yuan, Anal. Chim. Acta, 899, 75 (2015); https://doi.org/10.1016/j.aca.2015.10.004.
References
A. Ivanov, N.M. Solodukhina, L. Nilsson, M.P. Nikitin, P.I. Nikitin, V.P. Zubov and A.A. Vikhrov, Polym. Sci. Ser. A, 54, 1 (2012); https://doi.org/10.1134/S0965545X12010026.
H. Zhu, H. Yao, K. Xia, J. Liu, X. Yin, W. Zhang and J. Pan, Chem. Eng. J., 346, 317 (2018); https://doi.org/10.1016/j.cej.2018.03.170.
J. Turková, Bioaffinity chromatography, Elsevier, vol. 55 (1993).
I. Abreu-Sánchez, New Targets in Plant Boron Deficiency Response: N-Glycosylation and Regulation of Root Development (2016).
S. Jin, W. Zhang, Q. Yang, L. Dai and P. Zhou, Talanta, 178, 710 (2018); https://doi.org/10.1016/j.talanta.2017.10.011.
D. Li, Y. Chen and Z. Liu, Chem. Soc. Rev., 44, 8097 (2015); https://doi.org/10.1039/C5CS00013K.
Y. Zhang, H. Yin and H. Lu, Glycoconj. J., 29, 249 (2012); https://doi.org/10.1007/s10719-012-9398-x.
Y. Zhang, X. Xie, X. Zhao, F. Tian, J. Lv, W. Ying and X. Qian, J. Proteomics, 170, 14 (2018); https://doi.org/10.1016/j.jprot.2017.09.014.
H. Xiao, F. Sun, S. Suttapitugsakul and R. Wu, Mass Spectrom. Rev., (2019); https://doi.org/10.1002/mas.21586.
D. Medina-Cano, E. Ucuncu, L.S. Nguyen, M. Nicouleau, J. Lipecka, J.-C. Bizot, C. Thiel, F. Foulquier, N. Lefort, C. Faivre-Sarrailh, L. Colleaux, I.C. Guerrera and V. Cantagrel, eLife, 7, e38309 (2018); https://doi.org/10.7554/eLife.38309.
D.E. McCoy, T. Feo, T.A. Harvey and R.O. Prum, Nat. Commun., 9, 1 (2018); https://doi.org/10.1038/s41467-017-02088-w.
H. Li and Z. Liu, TrAC Trends Anal. Chem., 37, 148 (2012); https://doi.org/10.1016/j.trac.2012.03.010.
D.F. Zielinska, F. Gnad, J.R. Wiœniewski and M. Mann, Cell, 141, 897 (2010); https://doi.org/10.1016/j.cell.2010.04.012.
J.S. Fossey, F. D’Hooge, J.M.H. van den Elsen, M.P. Pereira Morais, S.I. Pascu, S.D. Bull, F. Marken, A.T.A. Jenkins, Y.-B. Jiang and T.D. James, Chem. Rec., 12, 464 (2012); https://doi.org/10.1002/tcr.201200006.
E. Alzahrani and K. Welham, Analyst, 136, 4321 (2011); https://doi.org/10.1039/c1an15447h.
E. Alzahrani and K. Welham, Anal. Chim. Acta, 798, 40 (2013); https://doi.org/10.1016/j.aca.2013.08.035.
E. Alzahrani and K. Welham, Analyst, 137, 4751 (2012); https://doi.org/10.1039/c2an16018h.
R. Nishiyabu, Y. Kubo, T.D. James and J.S. Fossey, Chem. Commun., 47, 1106 (2011); https://doi.org/10.1039/c0cc02920c.
X.-C. Liu and W.H. Scouten, Boronate Affinity Chromatography, In: Affinity Chromatography, Springer, pp. 119-128 (2000).
X. Ling and Z. Chen, Anal. Bioanal. Chem., 410, 501 (2018); https://doi.org/10.1007/s00216-017-0740-9.
L. Ren, Z. Liu, M. Dong, M. Ye and H. Zou, J. Chromatogr. A, 1216, 4768 (2009); https://doi.org/10.1016/j.chroma.2009.04.036.
G. Wulff, Pure Appl. Chem., 54, 2093 (1982); https://doi.org/10.1351/pac198254112093.
G. Wulff, M. Lauer and H. Böhnke, Angew. Chem. Int. Ed. Engl., 23, 741 (1984); https://doi.org/10.1002/anie.198407411.
S. Jin, L. Liu and P. Zhou, Mikrochim. Acta, 185, 308 (2018); https://doi.org/10.1007/s00604-018-2824-4.
A. Matsumoto, K. Yamamoto, R. Yoshida, K. Kataoka, T. Aoyagi and Y. Miyahara, Chem. Commun., 46, 2203 (2010); https://doi.org/10.1039/b920319b.
M. Dowlut and D.G. Hall, J. Am. Chem. Soc., 128, 4226 (2006); https://doi.org/10.1021/ja057798c.
A. Pal, M. Bérubé and D.G. Hall, Angew. Chem. Int. Ed., 49, 1492 (2010); https://doi.org/10.1002/anie.200906620.
L. Ren, Y. Liu, M. Dong and Z. Liu, J. Chromatogr. A, 1216, 8421 (2009); https://doi.org/10.1016/j.chroma.2009.10.014.
M. Chen, Y. Lu, Q. Ma, L. Guo and Y.-Q. Feng, Analyst, 134, 2158 (2009); https://doi.org/10.1039/b909581k.
Y. Xu, Z. Wu, L. Zhang, H. Lu, P. Yang, P.A. Webley and D. Zhao, Anal. Chem., 81, 503 (2009); https://doi.org/10.1021/ac801912t.
J. Liu, K. Yang, Y. Qu, S. Li, Q. Wu, Z. Liang, L. Zhang and Y. Zhang, Chem. Commun., 51, 3896 (2015); https://doi.org/10.1039/C4CC10004B.
M. Khanal, T. Vausselin, A. Barras, O. Bande, K. Turcheniuk, M. Benazza, V. Zaitsev, C.M. Teodorescu, R. Boukherroub, A. Siriwardena, J. Dubuisson and S. Szunerits, ACS Appl. Mater. Interfaces, 5, 12488 (2013); https://doi.org/10.1021/am403770q.
O.G. Potter, M.C. Breadmore and E.F. Hilder, Analyst, 131, 1094 (2006); https://doi.org/10.1039/b609051f.
C. Wu, Y. Liang, Q. Zhao, Y. Qu, S. Zhang, Q. Wu, Z. Liang, L. Zhang and Y. Zhang, Chem. Eur. J., 20, 8737 (2014); https://doi.org/10.1002/chem.201402787.
D. Li, Y. Li, X. Li, Z. Bie, X. Pan, Q. Zhang and Z. Liu, J. Chromatogr. A, 1384, 88 (2015); https://doi.org/10.1016/j.chroma.2015.01.050.
X.-J. Li, M. Jia, Y.-X. Zhao, Z.-S. Liu and H. Akber Aisa, J. Chromatogr. A, 1438, 171 (2016); https://doi.org/10.1016/j.chroma.2016.02.031.
X. Hou, W. Huang, F. Zhu, F. Geng and M. Tian, Anal. Methods, 11, 317 (2019); https://doi.org/10.1039/C8AY02311E.
W. Zhang, W. Liu, P. Li, X. Xiao, H. Wang and B. Tang, Angew. Chem. Int. Ed., 53, 12489 (2014); https://doi.org/10.1002/anie.201405634.
W. Huang, X. Hou, Y. Tong and M. Tian, RSC Adv., 9, 5394 (2019); https://doi.org/10.1039/C9RA00511K.
E. Alzahrani, Int. J. Adv. Sci. Technical Res.., 1, 115 (2015).
Q. Li, C. Lü and Z. Liu, J. Chromatogr. A, 1305, 123 (2013); https://doi.org/10.1016/j.chroma.2013.07.007.
D. Sýkora, P. Rezanka, K. Záruba and V. Král, J. Sep. Sci., 42, 89 (2019); https://doi.org/10.1002/jssc.201801048.
X. Wang, N. Xia and L. Liu, Int. J. Mol. Sci., 14, 20890 (2013); https://doi.org/10.3390/ijms141020890.
R. Wu, H. Zou, H. Fu, W. Jin and M. Ye, Electrophoresis, 23, 1239 (2002); https://doi.org/10.1002/1522-2683(200205)23:9<1239::AIDELPS1239>3.0.CO;2-X.
E. Alzahrani, Int. J. Adv. Sci. Technical Res., 1, 209 (2015).
E. Alzahrani, Int. J. Adv. Eng. Nano Technol., 2, 13 (2014).
E. Alzahrani, Eng. Technol., 1, 138 (2015).
K. Lacina, P. Skládal and T.D. James, Chem. Cent. J., 8, 60 (2014); https://doi.org/10.1186/s13065-014-0060-5.
M.B. Espina-Benitez, J. Randon, C. Demesmay and V. Dugas, Sep. Purif. Rev., 47, 214 (2018); https://doi.org/10.1080/15422119.2017.1365085.
H. Zheng, H. Lin, J. Sui, J. Yin, B. Wang, T.R. Pavase and L. Cao, Chem. Select, 4, 623 (2019); https://doi.org/10.1002/slct.201801261.
I. Perçin, N. Idil and A. Denizli, Colloids Surf. B Biointerfaces, 162, 146 (2018); https://doi.org/10.1016/j.colsurfb.2017.11.044.
Y. Liu, L. Ren and Z. Liu, Chem. Commun., 47, 5067 (2011); https://doi.org/10.1039/c0cc05675h.
Z. Liu and H. He, Acc. Chem. Res., 50, 2185 (2017); https://doi.org/10.1021/acs.accounts.7b00179.
A. Jönsson, R.R. Svejdal, N. Bøgelund, T.T.T.N. Nguyen, H. Flindt, J.P. Kutter, K.D. Rand and J.P. Lafleur, Anal. Chem., 89, 4573 (2017); https://doi.org/10.1021/acs.analchem.6b05103.
K. Sitthisinthu, Small Molecule Analysis on a Modified Hydrophillic Interaction Liquid Chromatography (HILIC) Monolith Using MicroHPLC and Capillary Electrochromatography (CEC), King’s College: London (2015).
H. Li, H. Wang, Y. Liu and Z. Liu, Chem. Commun., 48, 4115 (2012); https://doi.org/10.1039/c2cc30230f.
F. Svec and C.G. Huber, Monolithic Materials: Promises, Challenges, Achievements, ACS Publications (2006).
Á. Sáfrány, B. Beiler, K. László and F. Svec, Polymer, 46, 2862 (2005); https://doi.org/10.1016/j.polymer.2005.02.024.
J.L. DoresSousa, A. Fernández-Pumarega, J. De Vos, M. Lämmerhofer, G. Desmet and S. Eeltink, J. Sep. Sci., 42, 522 (2019); https://doi.org/10.1002/jssc.201801092.
Z. Zajickova and I. Spánik, J. Sep. Sci., 42, 999 (2019); https://doi.org/10.1002/jssc.201801071.
M. Vázquez and B. Paull, Anal. Chim. Acta, 668, 100 (2010); https://doi.org/10.1016/j.aca.2010.04.033.
K. Chuda, J. Jasik, J. Carlier, P. Tabourier, C. Druon and X. Coqueret, Radiat. Phys. Chem., 75, 26 (2006); https://doi.org/10.1016/j.radphyschem.2005.06.007.
W.-L. Fang, L.-J. Xia, X. Huang, X.-F. Guo, J. Ding, H. Wang and Y.-Q. Feng, Chromatographia, 81, 1381 (2018); https://doi.org/10.1007/s10337-018-3592-3.
Y. Zhang, M. Mei, X. Huang and D. Yuan, Anal. Chim. Acta, 899, 75 (2015); https://doi.org/10.1016/j.aca.2015.10.004.