Copyright (c) 2014 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Supported Bimetallic Pt-M/g-A12O3 (M = Sn, Ce, Cr) Catalysts for Perhydrofluorene Dehydrogenation
Corresponding Author(s) : J.P. Li
Asian Journal of Chemistry,
Vol. 26 No. 19 (2014): Vol 26 Issue 19
Abstract
Effect of several oxide promoters (oxides of Sn, Ce and Cr) on dehydrogenation of perhydrofluorene over Pt/g-A12O3 catalyst was investigated. The effect of catalyst amount, temperature, carriers, loading amount were investigated. The catalysts were characterized by TEM, BET and H2-TPR. The addition of a promoter metal, such as Sn, Ce, or Cr, to Pt/g-A12O3 catalyst could remarkably increased its activity and dehydrogenation conversion rate of perhydrofluorene could be raised. The optimized calcined temperature is 500 °C with the perhydrofluorene dehydrogenation conversion over 97 %. The 2.5 wt. % Pt-0.5 wt. % Sn/g-A12O3 catalyst 2.5 wt. % Pt-0.5 wt. % Cr/g-A12O3 catalyst, 2.5 wt. % Pt-2.5 wt. % Ce/g-A12O3 catalyst resulted in a maximum perhydrofluorene dehydrogenation capacity of 6.667 wt. %, 6.609 wt. %, 6.641 wt. % with the perhydrofluorene dehydrogenation conversion over 98 %, significantly higher than that obtained for other catalysts.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- R.M. Navarro Yerga, M.C. Álvarez Galván, F. Del Valle, J.A. Villoria De La Mano and J.L.G. Fierro, ChemSusChem, 2, 471 (2009); doi:10.1002/cssc.200900018.
- W. Wang, Q. Zhao, J.X. Dong and J.P. Li, Int. J. Hydrogen Energy, 36, 7374 (2011); doi:10.1016/j.ijhydene.2011.03.096.
- B.P. Xu, J.X. Wen, S. Dembele, V.H.Y. Tam and S.J. Hawksworth, J. Loss Prevent Proc., 22, 279 (2009); doi:10.1016/j.jlp.2008.07.007.
- H. Huang, K.Y. Wang, S.J. Wang, M.T. Klein and W.H. Calkins, Energy Fuels, 10, 641 (1996); doi:10.1021/ef950260f.
- K. Srinivasu and S.K. Ghosh, Int. J. Hydrogen Energy, 36, 15681 (2011); doi:10.1016/j.ijhydene.2011.08.119.
- D.J. Wolstenholme, J.T. Titah, F.N. Che, K.T. Traboulsee, J. Flogeras and G.S. McGrady, J. Am. Chem. Soc., 133, 16598 (2011); doi:10.1021/ja206357a.
- I.P. Jain, P. Jain and A. Jain, J. Alloys Comp., 503, 303 (2010); doi:10.1016/j.jallcom.2010.04.250.
- S. Kalinichenka, L. Röntzsch and B. Kieback, Int. J. Hydrogen Energy, 34, 7749 (2009); doi:10.1016/j.ijhydene.2009.07.053.
- J.X. Dong, X.Y. Wang, H. Xu, Q. Zhao and J.P. Li, Int. J. Hydrogen Energy, 32, 4998 (2007); doi:10.1016/j.ijhydene.2007.08.009.
- J.P. Li, S.J. Cheng, Q. Zhao, P.P. Long and J.X. Dong, Int. J. Hydrogen Energy, 34, 1377 (2009); doi:10.1016/j.ijhydene.2008.11.048.
- S. Orimo, Y. Nakamori, J.R. Eliseo, A. Züttel and C.M. Jensen, Chem. Rev., 107, 4111 (2007); doi:10.1021/cr0501846.
- F. Alhumaidan, D. Cresswell and A. Garforth, Energy Fuels, 25, 4217 (2011); doi:10.1021/ef200829x.
- A.U. Pradhan, A. Shukla, J.V. Pande, S. Karmarkar and R.B. Biniwale, Int. J. Hydrogen Energy, 36, 680 (2011); doi:10.1016/j.ijhydene.2010.09.054.
- O.S. Alexeev and B.C. Gates, Ind. Eng. Chem. Res., 42, 1571 (2003); doi:10.1021/ie020351h.
- S. Hermes, M. Schröter, R. Schmid, L. Khodeir, M. Muhler, A. Tissler, R.W. Fischer and R.A. Fischer, Angew. Chem. Int. Ed., 44, 6237 (2005); doi:10.1002/anie.200462515.
References
R.M. Navarro Yerga, M.C. Álvarez Galván, F. Del Valle, J.A. Villoria De La Mano and J.L.G. Fierro, ChemSusChem, 2, 471 (2009); doi:10.1002/cssc.200900018.
W. Wang, Q. Zhao, J.X. Dong and J.P. Li, Int. J. Hydrogen Energy, 36, 7374 (2011); doi:10.1016/j.ijhydene.2011.03.096.
B.P. Xu, J.X. Wen, S. Dembele, V.H.Y. Tam and S.J. Hawksworth, J. Loss Prevent Proc., 22, 279 (2009); doi:10.1016/j.jlp.2008.07.007.
H. Huang, K.Y. Wang, S.J. Wang, M.T. Klein and W.H. Calkins, Energy Fuels, 10, 641 (1996); doi:10.1021/ef950260f.
K. Srinivasu and S.K. Ghosh, Int. J. Hydrogen Energy, 36, 15681 (2011); doi:10.1016/j.ijhydene.2011.08.119.
D.J. Wolstenholme, J.T. Titah, F.N. Che, K.T. Traboulsee, J. Flogeras and G.S. McGrady, J. Am. Chem. Soc., 133, 16598 (2011); doi:10.1021/ja206357a.
I.P. Jain, P. Jain and A. Jain, J. Alloys Comp., 503, 303 (2010); doi:10.1016/j.jallcom.2010.04.250.
S. Kalinichenka, L. Röntzsch and B. Kieback, Int. J. Hydrogen Energy, 34, 7749 (2009); doi:10.1016/j.ijhydene.2009.07.053.
J.X. Dong, X.Y. Wang, H. Xu, Q. Zhao and J.P. Li, Int. J. Hydrogen Energy, 32, 4998 (2007); doi:10.1016/j.ijhydene.2007.08.009.
J.P. Li, S.J. Cheng, Q. Zhao, P.P. Long and J.X. Dong, Int. J. Hydrogen Energy, 34, 1377 (2009); doi:10.1016/j.ijhydene.2008.11.048.
S. Orimo, Y. Nakamori, J.R. Eliseo, A. Züttel and C.M. Jensen, Chem. Rev., 107, 4111 (2007); doi:10.1021/cr0501846.
F. Alhumaidan, D. Cresswell and A. Garforth, Energy Fuels, 25, 4217 (2011); doi:10.1021/ef200829x.
A.U. Pradhan, A. Shukla, J.V. Pande, S. Karmarkar and R.B. Biniwale, Int. J. Hydrogen Energy, 36, 680 (2011); doi:10.1016/j.ijhydene.2010.09.054.
O.S. Alexeev and B.C. Gates, Ind. Eng. Chem. Res., 42, 1571 (2003); doi:10.1021/ie020351h.
S. Hermes, M. Schröter, R. Schmid, L. Khodeir, M. Muhler, A. Tissler, R.W. Fischer and R.A. Fischer, Angew. Chem. Int. Ed., 44, 6237 (2005); doi:10.1002/anie.200462515.