Copyright (c) 2014 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Analysis of Abamectin Residues in Peach Juice by Absorption Spectrum
Corresponding Author(s) : Rendong Ji
Asian Journal of Chemistry,
Vol. 26 No. 21 (2014): Vol 26 Issue 21
Abstract
In this work, two kinds of simple and precise approaches are developed for the determination of abamectin residues in peach juices based on absorption spectrum. One method focuses on the analysis of the intensity at 219 nm wavelength of original absorption spectra. The other one aims at the technology of calculating the intensity at 223, 249 and 259 nm wavelength of the first derivative of ratio spectra. In addition, both of correlation coefficients are found to be all higher than 0.99. Then the prediction models of abamectin residues were obtained in peach juice with good accuracy. The limit of detection was 0.1377 μg/mL and limit of quantifications was 0.4591 μg/mL in peach juice about the original absorption spectra method, while the minimum value of limit of detection was 0.0285 μg/mL and limit of quantifications was 0.0949 μg/mL about the first derivative of the ratio spectra method. Therefore, they can be suitably applied in the estimation of abamectin residues in peach juice.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M.H. Zhang, Pesticide, 37, 36 (1998).
- T. Virant Celestina, L. Kolar, I. Gobec, J. Kužner, V.C. Flajs, M. Pogačnik and N.K. Eržen, Ecotoxicol. Environ. Saf., 73, 18 (2010); doi:10.1016/j.ecoenv.2009.08.008.
- X.C. Xie, S.H. Zhang, D.S. Wang, P.W.-G. Huang, T. Yang and X.-H. He, Sci. Agric. Sinica, 38, 2254 (2005).
- X.H. Zhao, Z.Y. Cao, R.-X. Mou, P. Xu and M.-X. Chen, J. Instrumental Anal., 31,1266 (2012).
- N.M. Salem, R. Ahmad and H. Estaitieh, Chemosphere, 77, 673 (2009); doi:10.1016/j.chemosphere.2009.07.045.
- C.K. Bempah, A. Buah-Kwofie, E. Enimil, B. Blewu and G. Agyei-Martey, Food Contr., 25, 537 (2012); doi:10.1016/j.foodcont.2011.11.035.
- M. Bhanti and A. Taneja, Chemosphere, 69, 63 (2007); doi:10.1016/j.chemosphere.2007.04.071.
- A. Salemi, E. Shafiei and M. Vosough, Talanta, 101, 504 (2012); doi:10.1016/j.talanta.2012.10.009.
- J.M. Cortés, A. Vázquez, G. Santa-María, G.P. Blanch and J. Villén, Food Chem., 113, 280 (2009); doi:10.1016/j.foodchem.2008.07.010.
- J. Li, H.F. Zhang and Y.P. Shi, Food Chem., 127, 784 (2011); doi:10.1016/j.foodchem.2010.12.148.
- L.L. Qian, Y.Z. He and Y.Y. Hu, Spectrosc. Lett., 39, 581 (2006); doi:10.1080/00387010600824652.
- N. Chauhan and C.S. Pundir, Electrochim. Acta, 67, 79 (2012); doi:10.1016/j.electacta.2012.02.012.
References
M.H. Zhang, Pesticide, 37, 36 (1998).
T. Virant Celestina, L. Kolar, I. Gobec, J. Kužner, V.C. Flajs, M. Pogačnik and N.K. Eržen, Ecotoxicol. Environ. Saf., 73, 18 (2010); doi:10.1016/j.ecoenv.2009.08.008.
X.C. Xie, S.H. Zhang, D.S. Wang, P.W.-G. Huang, T. Yang and X.-H. He, Sci. Agric. Sinica, 38, 2254 (2005).
X.H. Zhao, Z.Y. Cao, R.-X. Mou, P. Xu and M.-X. Chen, J. Instrumental Anal., 31,1266 (2012).
N.M. Salem, R. Ahmad and H. Estaitieh, Chemosphere, 77, 673 (2009); doi:10.1016/j.chemosphere.2009.07.045.
C.K. Bempah, A. Buah-Kwofie, E. Enimil, B. Blewu and G. Agyei-Martey, Food Contr., 25, 537 (2012); doi:10.1016/j.foodcont.2011.11.035.
M. Bhanti and A. Taneja, Chemosphere, 69, 63 (2007); doi:10.1016/j.chemosphere.2007.04.071.
A. Salemi, E. Shafiei and M. Vosough, Talanta, 101, 504 (2012); doi:10.1016/j.talanta.2012.10.009.
J.M. Cortés, A. Vázquez, G. Santa-María, G.P. Blanch and J. Villén, Food Chem., 113, 280 (2009); doi:10.1016/j.foodchem.2008.07.010.
J. Li, H.F. Zhang and Y.P. Shi, Food Chem., 127, 784 (2011); doi:10.1016/j.foodchem.2010.12.148.
L.L. Qian, Y.Z. He and Y.Y. Hu, Spectrosc. Lett., 39, 581 (2006); doi:10.1080/00387010600824652.
N. Chauhan and C.S. Pundir, Electrochim. Acta, 67, 79 (2012); doi:10.1016/j.electacta.2012.02.012.