Copyright (c) 2014 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Solid Phase Extraction and Graphite Furnace Atomic Absorption Spectrometry for Determination of Silver and Palladium with Diaion SP700 as Sorbent
Corresponding Author(s) : Zhangjie Huang
Asian Journal of Chemistry,
Vol. 26 No. 21 (2014): Vol 26 Issue 21
Abstract
A solid phase extraction and graphite furnace atomic absorption spectrometry (GFAAS) for the determination of silver and palladium with Diaion SP700 resin as sorbent was studied. Silver and palladium were reacted with diisopentyl sulfoxide followed by adsorption onto Diaion SP700 solid phase extraction column and 1 mol L-1 HNO3 was used as eluent. The effects of various parameters such as acidity, flow rate of sample and eluent, type of eluent, amount of adsorbent and interfering ions have been studied. The silver and palladium in 250 mL solution can be concentrated to 1 mL, representing an enrichment factor of 250 was achieved. When detected with graphite furnace atomic absorption spectrometry, the detection limits in the original samples were 0.0013 μg L-1 for Ag(I) and 0.0027 μg L-1 for Pd(II). The relative standard deviations for ten replicate measurements were 3.8 % for 0.2 μg L-1 silver and 3.6 % for 0.2 μg L-1 palladium, respectively. The presented procedure was applied to the determination of silver and palladium in biological, ore and water samples with good results (recoveries range from 94 to 106 %).
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- R.G.O. Araujo, F. Vignola, I.N.B. Castilho, B. Welz, M.G.R. Vale, P. Smichowski, S.L.C. Ferreira and H. Becker-Ross, Microchem. J., 109, 36 (2013); doi:10.1016/j.microc.2012.05.009.
- S. Saeki, M. Kubota and T. Asami, Water Air Soil Pollut., 83, 253 (1995); doi:10.1007/BF00477356.
- P. Liang and L.L. Peng, Mikrochim. Acta, 168, 45 (2010); doi:10.1007/s00604-009-0253-0.
- G. Khayatian and S. Hassanpoor, J. Incl. Phenom. Macrocycl. Chem., 73, 151 (2012); doi:10.1007/s10847-011-0038-z.
- P. Liang, L.L. Zhang and E. Zhao, Talanta, 82, 993 (2010); doi:10.1016/j.talanta.2010.06.004.
- I. López-García, Spectrochim. Acta B, 58, 1715 (2003); doi:10.1016/S0584-8547(03)00135-6.
- J.L. Manzoori, H. Abdolmohammad-Zadeh and M. Amjadi, J. Hazard. Mater., 144, 458 (2007); doi:10.1016/j.jhazmat.2006.10.084.
- P. Liang, E. Zhao and F. Li, Talanta, 77, 1854 (2009); doi:10.1016/j.talanta.2008.10.033.
- C.B. Ojeda, F. Sánchez Rojas and J.M.C. Pavón, Mikrochim. Acta, 158, 103 (2007); doi:10.1007/s00604-006-0700-0.
- M.R. Jamali, Y. Assadi, F. Shemirani and M. Salavati-Niasari, Talanta, 71, 1524 (2007); doi:10.1016/j.talanta.2006.07.034.
- F. Shemirani, R.R. Kozani, M. Reza Jamali, Y. Assadi and M.-R. Milani Hosseini, Int. J. Environ. Anal. Chem., 86, 1105 (2006); doi:10.1080/03067310600833427.
- M. Soylak and M. Tuzen, J. Hazard. Mater., 152, 656 (2008); doi:10.1016/j.jhazmat.2007.07.027.
- A.N. Anthemidis, D.G. Themelis and J.A. Stratis, Talanta, 54, 37 (2001); doi:10.1016/S0039-9140(00)00620-2.
- R.S. Praveen, S. Daniel, T.P. Rao, S. Sampath and K.S. Rao, Talanta, 70, 437 (2006); doi:10.1016/j.talanta.2006.03.001.
- C.T. Camagong and T. Honjo, Anal. Bioanal. Chem., 373, 856 (2002); doi:10.1007/s00216-002-1375-y.
- M. Tuzen and M. Soylak, J. Hazard. Mater., 164, 1428 (2009); doi:10.1016/j.jhazmat.2008.09.050.
- C.K. Christou and A.N. Anthemidis, Talanta, 78, 144 (2009); doi:10.1016/j.talanta.2008.10.050.
- F. Shemirani, R.R. Kozani and Y. Assadi, Mikrochim. Acta, 157, 81 (2007); doi:10.1007/s00604-006-0654-2.
- S.Z. Mohammadi, D. Afzali, M.A. Taher and Y.M. Baghelani, Talanta, 80, 875 (2009); doi:10.1016/j.talanta.2009.08.009.
References
R.G.O. Araujo, F. Vignola, I.N.B. Castilho, B. Welz, M.G.R. Vale, P. Smichowski, S.L.C. Ferreira and H. Becker-Ross, Microchem. J., 109, 36 (2013); doi:10.1016/j.microc.2012.05.009.
S. Saeki, M. Kubota and T. Asami, Water Air Soil Pollut., 83, 253 (1995); doi:10.1007/BF00477356.
P. Liang and L.L. Peng, Mikrochim. Acta, 168, 45 (2010); doi:10.1007/s00604-009-0253-0.
G. Khayatian and S. Hassanpoor, J. Incl. Phenom. Macrocycl. Chem., 73, 151 (2012); doi:10.1007/s10847-011-0038-z.
P. Liang, L.L. Zhang and E. Zhao, Talanta, 82, 993 (2010); doi:10.1016/j.talanta.2010.06.004.
I. López-García, Spectrochim. Acta B, 58, 1715 (2003); doi:10.1016/S0584-8547(03)00135-6.
J.L. Manzoori, H. Abdolmohammad-Zadeh and M. Amjadi, J. Hazard. Mater., 144, 458 (2007); doi:10.1016/j.jhazmat.2006.10.084.
P. Liang, E. Zhao and F. Li, Talanta, 77, 1854 (2009); doi:10.1016/j.talanta.2008.10.033.
C.B. Ojeda, F. Sánchez Rojas and J.M.C. Pavón, Mikrochim. Acta, 158, 103 (2007); doi:10.1007/s00604-006-0700-0.
M.R. Jamali, Y. Assadi, F. Shemirani and M. Salavati-Niasari, Talanta, 71, 1524 (2007); doi:10.1016/j.talanta.2006.07.034.
F. Shemirani, R.R. Kozani, M. Reza Jamali, Y. Assadi and M.-R. Milani Hosseini, Int. J. Environ. Anal. Chem., 86, 1105 (2006); doi:10.1080/03067310600833427.
M. Soylak and M. Tuzen, J. Hazard. Mater., 152, 656 (2008); doi:10.1016/j.jhazmat.2007.07.027.
A.N. Anthemidis, D.G. Themelis and J.A. Stratis, Talanta, 54, 37 (2001); doi:10.1016/S0039-9140(00)00620-2.
R.S. Praveen, S. Daniel, T.P. Rao, S. Sampath and K.S. Rao, Talanta, 70, 437 (2006); doi:10.1016/j.talanta.2006.03.001.
C.T. Camagong and T. Honjo, Anal. Bioanal. Chem., 373, 856 (2002); doi:10.1007/s00216-002-1375-y.
M. Tuzen and M. Soylak, J. Hazard. Mater., 164, 1428 (2009); doi:10.1016/j.jhazmat.2008.09.050.
C.K. Christou and A.N. Anthemidis, Talanta, 78, 144 (2009); doi:10.1016/j.talanta.2008.10.050.
F. Shemirani, R.R. Kozani and Y. Assadi, Mikrochim. Acta, 157, 81 (2007); doi:10.1007/s00604-006-0654-2.
S.Z. Mohammadi, D. Afzali, M.A. Taher and Y.M. Baghelani, Talanta, 80, 875 (2009); doi:10.1016/j.talanta.2009.08.009.