Copyright (c) 2014 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Microwave Assisted Synthesis of Barium Titanate Nanoparticles and Its Effects on the Proliferation of Primary Osteoblasts in vitro
Corresponding Author(s) : Zhilin Li
Asian Journal of Chemistry,
Vol. 26 No. 21 (2014): Vol 26 Issue 21
Abstract
The barium titanate nanoparticles were successfully synthesized using microwave synthesis method and evaluated for antiproliferation activity against primary osteoblasts. The effects of microwave irradiation power and reaction time on the reaction rate and size control of barium titanate nanoparticles were investigated. The data revealed that the nanoparticle size decreasesd with increasing irradiation power. The barium titanate nanoparticles were formed after 20 min of microwave irradiation. The barium titanate nanoparticles synthesized were analyzed by field emission scanning electron microscopy, powder X-ray diffraction, Fourier transform infrared spectroscopy and dynamic light scattering. The barium titanate nanoparticles were nearly spherical particles with an average size of 80-100 nm. The antiproliferation activity of barium titanate nanoparticles showed that the inhibition effects followed dose and time dependent manner. The inhibition effects were increased with decreasing size and the effects may be related to cell apoptosis mechanism.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- T. Lee and I.A. Aksay, Cryst. Growth Des., 1, 401 (2001); doi:10.1021/cg010012b.
- W.J. Merz, Phys. Rev., 76, 1221 (1949); doi:10.1103/PhysRev.76.1221.
- A.I. Kingon, S.K. Streiffer, C. Basceri and S.R. Summerfelt, MRS Bull., 21, 46 (1996).
- Y. Luo and X. Liu, Mater. Lett., 59, 3881 (2005); doi:10.1016/j.matlet.2005.06.065.
- M. Mori, T. Kineri, K. Kadono, T. Sakaguchi, M. Miya, H. Wakabayashi and T. Tsuchiya, J. Am. Ceram. Soc., 78, 2391 (1995); doi:10.1111/j.1151-2916.1995.tb08674.x.
- P.K. Singh, S. Cochrane, W.T. Liu, K. Chen, D.B. Knorr, J.M. Borrego, E.J. Rymaszewski and T.M. Lu, Appl. Phys. Lett., 66, 3683 (1995); doi:10.1063/1.114140.
- R.D. Levi and Y. Tsur, Adv. Mater., 17, 1606 (2005); doi:10.1002/adma.200401859.
- X. Wei, G. Xu, Z.H. Ren, Y.G. Wang, G. Shen and G.R. Han, J. Am. Ceram. Soc., 91, 315 (2008); doi:10.1111/j.1551-2916.2007.02098.x.
- G. Ciofani, S. Danti, S. Moscato, L. Albertazzi, D. D’Alessandro, D. Dinucci, F. Chiellini, M. Petrini and A. Menciassi, Colloids Surf. B, 76, 535 (2010); doi:10.1016/j.colsurfb.2009.12.015.
- Z.G. Shen, J.F. Chen, H.K. Zou and J. Yun, J. Colloid Interf. Sci., 275, 158 (2004); doi:10.1016/j.jcis.2003.12.025.
- L.K. Templeton and J.A. Pask, J. Am. Ceram. Soc., 42, 212 (1959); doi:10.1111/j.1151-2916.1959.tb15455.x.
- W. Maison, R. Kleeberg, R.B. Heimann and S. Phanichphant, J. Eur. Ceram. Soc., 23, 127 (2003); doi:10.1016/S0955-2219(02)00071-7.
- S. Yoon, S. Baik, M.G. Kim and N. Shin, J. Am. Ceram. Soc., 89, 1816 (2006); doi:10.1111/j.1551-2916.2006.01056.x.
- R.J. Giguere, T.L. Bray, S.M. Duncan and G. Majetich, Tetrahedron Lett., 27, 4945 (1986); doi:10.1016/S0040-4039(00)85103-5.
- N. Arshi, F. Ahmed, S. Kumar, M.S. Anwar, J.Q. Lu, B.H. Koo and C.G. Lee, Curr. Appl. Phys., 11, S360 (2011); doi:10.1016/j.cap.2010.11.102.
- G.Q. Zhou, G.Q. Gu, Y. Li, Q. Zhang, W.Y. Wang, S.X. Wang and J.C. Zhang, Biol. Trace Elem. Res., 153, 411 (2013); doi:10.1007/s12011-013-9655-2.
- Y. Liu, F. Jiao, Y. Qiu, W. Li, Y. Qu, C.X. Tian, Y.F. Li, R. Bai, F. Lao, Y.L. Zhao, Z.F. Chai and C.Y. Chen, Nanotechnology, 20, 415102 (2009); doi:10.1088/0957-4484/20/41/415102.
- R. Foldbjerg, D.A. Dang and H. Autrup, Arch. Toxicol., 85, 743 (2011); doi:10.1007/s00204-010-0545-5.
References
T. Lee and I.A. Aksay, Cryst. Growth Des., 1, 401 (2001); doi:10.1021/cg010012b.
W.J. Merz, Phys. Rev., 76, 1221 (1949); doi:10.1103/PhysRev.76.1221.
A.I. Kingon, S.K. Streiffer, C. Basceri and S.R. Summerfelt, MRS Bull., 21, 46 (1996).
Y. Luo and X. Liu, Mater. Lett., 59, 3881 (2005); doi:10.1016/j.matlet.2005.06.065.
M. Mori, T. Kineri, K. Kadono, T. Sakaguchi, M. Miya, H. Wakabayashi and T. Tsuchiya, J. Am. Ceram. Soc., 78, 2391 (1995); doi:10.1111/j.1151-2916.1995.tb08674.x.
P.K. Singh, S. Cochrane, W.T. Liu, K. Chen, D.B. Knorr, J.M. Borrego, E.J. Rymaszewski and T.M. Lu, Appl. Phys. Lett., 66, 3683 (1995); doi:10.1063/1.114140.
R.D. Levi and Y. Tsur, Adv. Mater., 17, 1606 (2005); doi:10.1002/adma.200401859.
X. Wei, G. Xu, Z.H. Ren, Y.G. Wang, G. Shen and G.R. Han, J. Am. Ceram. Soc., 91, 315 (2008); doi:10.1111/j.1551-2916.2007.02098.x.
G. Ciofani, S. Danti, S. Moscato, L. Albertazzi, D. D’Alessandro, D. Dinucci, F. Chiellini, M. Petrini and A. Menciassi, Colloids Surf. B, 76, 535 (2010); doi:10.1016/j.colsurfb.2009.12.015.
Z.G. Shen, J.F. Chen, H.K. Zou and J. Yun, J. Colloid Interf. Sci., 275, 158 (2004); doi:10.1016/j.jcis.2003.12.025.
L.K. Templeton and J.A. Pask, J. Am. Ceram. Soc., 42, 212 (1959); doi:10.1111/j.1151-2916.1959.tb15455.x.
W. Maison, R. Kleeberg, R.B. Heimann and S. Phanichphant, J. Eur. Ceram. Soc., 23, 127 (2003); doi:10.1016/S0955-2219(02)00071-7.
S. Yoon, S. Baik, M.G. Kim and N. Shin, J. Am. Ceram. Soc., 89, 1816 (2006); doi:10.1111/j.1551-2916.2006.01056.x.
R.J. Giguere, T.L. Bray, S.M. Duncan and G. Majetich, Tetrahedron Lett., 27, 4945 (1986); doi:10.1016/S0040-4039(00)85103-5.
N. Arshi, F. Ahmed, S. Kumar, M.S. Anwar, J.Q. Lu, B.H. Koo and C.G. Lee, Curr. Appl. Phys., 11, S360 (2011); doi:10.1016/j.cap.2010.11.102.
G.Q. Zhou, G.Q. Gu, Y. Li, Q. Zhang, W.Y. Wang, S.X. Wang and J.C. Zhang, Biol. Trace Elem. Res., 153, 411 (2013); doi:10.1007/s12011-013-9655-2.
Y. Liu, F. Jiao, Y. Qiu, W. Li, Y. Qu, C.X. Tian, Y.F. Li, R. Bai, F. Lao, Y.L. Zhao, Z.F. Chai and C.Y. Chen, Nanotechnology, 20, 415102 (2009); doi:10.1088/0957-4484/20/41/415102.
R. Foldbjerg, D.A. Dang and H. Autrup, Arch. Toxicol., 85, 743 (2011); doi:10.1007/s00204-010-0545-5.