Copyright (c) 2019 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Synthesis, Characterization and Antifungal Studies of Adducts of p-Ethylphenyldithiocarbonates of Copper(II)
Corresponding Author(s) : Shivangi Sharma
Asian Journal of Chemistry,
Vol. 31 No. 8 (2019): Vol 31 Issue 8
Abstract
A series of adducts of p-ethylphenyldithiocarbonates of copper(II) [(p-C2H5C6H4OCS2)2Cu] with ethyl pyridines and chloro pyridines have been synthesized in 1:2 molar ratio. They were characterized by elemental analysis, magnetic susceptibility and molar conductance measurements, infrared, electronic, electron spin resonance and mass spectroscopy, NMR and thermogravimetric analysis. In addition, antifungal studies of these adducts were also performed. The results revealed that the adducts have 1:2 stoichiometry, non-electrolytic and paramagnetic at room temperature. On the basis of spectral studies, a distorted octahedral geometry is proposed around copper(II) ion. ESR studies depicted elongated axial symmetry of Cu(II)adducts with nitrogen donors. Moreover, the adducts also showed potential antifungal activity against Fusarium oxysporium.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S. Ghoshal and V.K. Jain, J. Chem. Sci., 119, 583 (2007); https://doi.org/10.1007/s12039-007-0073-x.
- H.W. Chen and J.P. Fackler, Inorg. Chem., 17, 22 (1978); https://doi.org/10.1021/ic50179a006.
- J.P. Fackler Jr., D.P. Schussler and H.W. Chen, Synth. Inorg. Met.-Org. Chem., 8, 27 (1978); https://doi.org/10.1080/00945717808057383.
- R.F. Semeniuc, T.J. Reamer, J.P. Blitz, K.A. Wheeler and M.D. Smith, Inorg. Chem., 49, 2624 (2010); https://doi.org/10.1021/ic901551t.
- S. Andotra, N. Kalgotra and S.K. Pandey, Bioinorg. Chem. Appl., 2014, 1 (2014); https://doi.org/10.1155/2014/780631.
- O.V. Bakbardina, I.Y. Pukhnyarskaya, M.A. Gazalieva, S.D. Fazylov and E.M. Makarov, Russ. J. Appl. Chem., 79, 1726 (2006); https://doi.org/10.1134/S1070427206100375.
- A.A. Abramov and K.S.E. Forssberg, Miner. Process. Extr. Metall. Rev., 26, 77 (2005); https://doi.org/10.1080/08827500590883197.
- S. Chaudhari and V. Tare, J. Appl. Polym. Sci., 71, 1325 (1999); https://doi.org/10.1002/(SICI)1097-4628(19990222)71:8<1325::AIDAPP12>3.0.CO;2-F.
- G. Winter, Rev. Inorg. Chem., 2, 253 (1980).
- R.P. Burns, F.P. Mccullough and C.A. Mcauliffe, Adv. Inorg. Chem. Radiochem., 23, 211 (1980); https://doi.org/10.1016/S0065-2792(08)60094-1.
- E.R.T. Tiekink and G. Winter, Rev. Inorg. Chem., 12, 183 (1992); https://doi.org/10.1515/REVIC.1992.12.3-4.183.
- B.F. Hoskins and C.D. Pannan, J. Chem. Soc. Chem. Commun., 11, 408 (1975); https://doi.org/10.1039/c39750000408.
- D. Dakternieks, R. Di Giacomo, R.W. Gable and B.F. Hoskins, J. Am. Chem. Soc., 110, 6762 (1988); https://doi.org/10.1021/ja00228a026.
- K. Xu and W. Ding, Mater. Lett., 62, 4437 (2008); https://doi.org/10.1016/j.matlet.2008.07.040.
- L.I. Victoriano and H.B. Cortes, J. Coord. Chem., 39, 231 (1996); https://doi.org/10.1080/00958979608024331.
- M. Scendo, Corros. Sci., 47, 1738 (2005); https://doi.org/10.1016/j.corsci.2004.08.015.
- W.J. Orts, R.E. Sojka and G.M. Glenn, Agro Food Ind. Hi-Tech, 13, 37 (2002).
- A.O. Gorgulu, M. Arslan and E. Cil, J. Coord. Chem., 59, 637 (2006); https://doi.org/10.1080/00958970500393356.
- A.C. Larsson and S. Oberg, J. Phys. Chem. A, 115, 1396 (2011); https://doi.org/10.1021/jp110233d.
- E. Amtmann, Drugs Exp. Clin. Res., 22, 287 (1996).
- M. Perluigi, G. Joshi, R. Sultana, V. Calabrese, C. De Marco, R. Coccia and D.A. Butterfield, Neurosci., 138, 1161 (2006); https://doi.org/10.1016/j.neuroscience.2005.12.004.
- G. Crisponi, V.M. Nurchi, D. Fanni, C. Gerosa, S. Nemolato and G. Faa, Coord. Chem. Rev., 254, 876 (2010); https://doi.org/10.1016/j.ccr.2009.12.018.
- J.A. Drewry and P.T. Gunning, Coord. Chem. Rev., 255, 459 (2011); https://doi.org/10.1016/j.ccr.2010.10.018.
- M.E. Katsarou, E.K. Efthimiadou, G. Psomas, A. Karaliota and D. Vourloumis, J. Med. Chem., 51, 470 (2008); https://doi.org/10.1021/jm7013259.
- E.K. Efthimiadou, H. Thomadaki, Y. Sanakis, C.P. Raptopoulou, N. Katsaros, A. Scorilas, A. Karaliota and G. Psomas, J. Inorg. Biochem., 101, 64 (2007); https://doi.org/10.1016/j.jinorgbio.2006.07.019.
- F. Dimiza, S. Fountoulaki, A.N. Papadopoulos, C.A. Kontogiorgis, V. Tangoulis, C.P. Raptopoulou, V. Psycharis, A. Terzis, D.P. Kessissoglou and G. Psomas, Dalton Trans., 40, 8555 (2011); https://doi.org/10.1039/c1dt10714c.
- F. Dimiza, F. Perdih, V. Tangoulis, I. Turel, D.P. Kessissoglou and G. Psomas, J. Inorg. Biochem., 105, 476 (2011); https://doi.org/10.1016/j.jinorgbio.2010.08.013.
- B. Gupta, N. Kalgotra, S. Andotra and S.K. Pandey, Monatsh. Chem., 143, 1087 (2012); https://doi.org/10.1007/s00706-011-0704-2.
- R.L. Martin and A. Whitley, J. Chem. Soc., 13, 1394 (1958); https://doi.org/10.1039/jr9580001394.
- W.J. Geary, Coord. Chem. Rev., 7, 81 (1971); https://doi.org/10.1016/S0010-8545(00)80009-0.
- C. Spinu and A. Kriza, Acta Chim. Slov., 47, 179 (2000).
- N. Singh and A. Prasad, Indian J. Chem., 47A, 650 (2008).
- G. Kumar, A. Kumar, N. Shishodia, Y.P. Garg and B.P. Yadav, E-J. Chem., 8, 1872 (2011); https://doi.org/10.1155/2011/497279.
- G.S. Kurdekar, S. Mudigoudar Puttanagouda, N.V. Kulkarni, S. Budagumpi and V.K. Revankar, Med. Chem. Res., 20, 421 (2011); https://doi.org/10.1007/s00044-010-9330-5.
- R.A. Ahmadi, F. Hasanvand, G. Bruno, H.A. Rudbari and S. Amani, ISRN Inorg. Chem., 2013, 426712 (2013); https://doi.org/10.1155/2013/426712.
- B.G. Tweedy and C. Loeppky, Phytopathology, 58, 1522 (1968).
References
S. Ghoshal and V.K. Jain, J. Chem. Sci., 119, 583 (2007); https://doi.org/10.1007/s12039-007-0073-x.
H.W. Chen and J.P. Fackler, Inorg. Chem., 17, 22 (1978); https://doi.org/10.1021/ic50179a006.
J.P. Fackler Jr., D.P. Schussler and H.W. Chen, Synth. Inorg. Met.-Org. Chem., 8, 27 (1978); https://doi.org/10.1080/00945717808057383.
R.F. Semeniuc, T.J. Reamer, J.P. Blitz, K.A. Wheeler and M.D. Smith, Inorg. Chem., 49, 2624 (2010); https://doi.org/10.1021/ic901551t.
S. Andotra, N. Kalgotra and S.K. Pandey, Bioinorg. Chem. Appl., 2014, 1 (2014); https://doi.org/10.1155/2014/780631.
O.V. Bakbardina, I.Y. Pukhnyarskaya, M.A. Gazalieva, S.D. Fazylov and E.M. Makarov, Russ. J. Appl. Chem., 79, 1726 (2006); https://doi.org/10.1134/S1070427206100375.
A.A. Abramov and K.S.E. Forssberg, Miner. Process. Extr. Metall. Rev., 26, 77 (2005); https://doi.org/10.1080/08827500590883197.
S. Chaudhari and V. Tare, J. Appl. Polym. Sci., 71, 1325 (1999); https://doi.org/10.1002/(SICI)1097-4628(19990222)71:8<1325::AIDAPP12>3.0.CO;2-F.
G. Winter, Rev. Inorg. Chem., 2, 253 (1980).
R.P. Burns, F.P. Mccullough and C.A. Mcauliffe, Adv. Inorg. Chem. Radiochem., 23, 211 (1980); https://doi.org/10.1016/S0065-2792(08)60094-1.
E.R.T. Tiekink and G. Winter, Rev. Inorg. Chem., 12, 183 (1992); https://doi.org/10.1515/REVIC.1992.12.3-4.183.
B.F. Hoskins and C.D. Pannan, J. Chem. Soc. Chem. Commun., 11, 408 (1975); https://doi.org/10.1039/c39750000408.
D. Dakternieks, R. Di Giacomo, R.W. Gable and B.F. Hoskins, J. Am. Chem. Soc., 110, 6762 (1988); https://doi.org/10.1021/ja00228a026.
K. Xu and W. Ding, Mater. Lett., 62, 4437 (2008); https://doi.org/10.1016/j.matlet.2008.07.040.
L.I. Victoriano and H.B. Cortes, J. Coord. Chem., 39, 231 (1996); https://doi.org/10.1080/00958979608024331.
M. Scendo, Corros. Sci., 47, 1738 (2005); https://doi.org/10.1016/j.corsci.2004.08.015.
W.J. Orts, R.E. Sojka and G.M. Glenn, Agro Food Ind. Hi-Tech, 13, 37 (2002).
A.O. Gorgulu, M. Arslan and E. Cil, J. Coord. Chem., 59, 637 (2006); https://doi.org/10.1080/00958970500393356.
A.C. Larsson and S. Oberg, J. Phys. Chem. A, 115, 1396 (2011); https://doi.org/10.1021/jp110233d.
E. Amtmann, Drugs Exp. Clin. Res., 22, 287 (1996).
M. Perluigi, G. Joshi, R. Sultana, V. Calabrese, C. De Marco, R. Coccia and D.A. Butterfield, Neurosci., 138, 1161 (2006); https://doi.org/10.1016/j.neuroscience.2005.12.004.
G. Crisponi, V.M. Nurchi, D. Fanni, C. Gerosa, S. Nemolato and G. Faa, Coord. Chem. Rev., 254, 876 (2010); https://doi.org/10.1016/j.ccr.2009.12.018.
J.A. Drewry and P.T. Gunning, Coord. Chem. Rev., 255, 459 (2011); https://doi.org/10.1016/j.ccr.2010.10.018.
M.E. Katsarou, E.K. Efthimiadou, G. Psomas, A. Karaliota and D. Vourloumis, J. Med. Chem., 51, 470 (2008); https://doi.org/10.1021/jm7013259.
E.K. Efthimiadou, H. Thomadaki, Y. Sanakis, C.P. Raptopoulou, N. Katsaros, A. Scorilas, A. Karaliota and G. Psomas, J. Inorg. Biochem., 101, 64 (2007); https://doi.org/10.1016/j.jinorgbio.2006.07.019.
F. Dimiza, S. Fountoulaki, A.N. Papadopoulos, C.A. Kontogiorgis, V. Tangoulis, C.P. Raptopoulou, V. Psycharis, A. Terzis, D.P. Kessissoglou and G. Psomas, Dalton Trans., 40, 8555 (2011); https://doi.org/10.1039/c1dt10714c.
F. Dimiza, F. Perdih, V. Tangoulis, I. Turel, D.P. Kessissoglou and G. Psomas, J. Inorg. Biochem., 105, 476 (2011); https://doi.org/10.1016/j.jinorgbio.2010.08.013.
B. Gupta, N. Kalgotra, S. Andotra and S.K. Pandey, Monatsh. Chem., 143, 1087 (2012); https://doi.org/10.1007/s00706-011-0704-2.
R.L. Martin and A. Whitley, J. Chem. Soc., 13, 1394 (1958); https://doi.org/10.1039/jr9580001394.
W.J. Geary, Coord. Chem. Rev., 7, 81 (1971); https://doi.org/10.1016/S0010-8545(00)80009-0.
C. Spinu and A. Kriza, Acta Chim. Slov., 47, 179 (2000).
N. Singh and A. Prasad, Indian J. Chem., 47A, 650 (2008).
G. Kumar, A. Kumar, N. Shishodia, Y.P. Garg and B.P. Yadav, E-J. Chem., 8, 1872 (2011); https://doi.org/10.1155/2011/497279.
G.S. Kurdekar, S. Mudigoudar Puttanagouda, N.V. Kulkarni, S. Budagumpi and V.K. Revankar, Med. Chem. Res., 20, 421 (2011); https://doi.org/10.1007/s00044-010-9330-5.
R.A. Ahmadi, F. Hasanvand, G. Bruno, H.A. Rudbari and S. Amani, ISRN Inorg. Chem., 2013, 426712 (2013); https://doi.org/10.1155/2013/426712.
B.G. Tweedy and C. Loeppky, Phytopathology, 58, 1522 (1968).