Copyright (c) 2019 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Microwave Assisted Synthesis and Optical Properties of Highly Fluorescent N-Doped Carbon Dots
Corresponding Author(s) : G. Sridevi
Asian Journal of Chemistry,
Vol. 31 No. 12 (2019): Vol 31 Issue 12
Abstract
Herein, a rapid microwave assisted solid state method is reported for the synthesis of highly fluorescent N-doped carbon dots (NCDs) using citric acid as carbon source and guanidine hydrochloride as N-dopant. Synthetic parameters such as microwave power, irradiation time and reactants ratio were optimized to produce high quality N-doped carbon dots. The N-doped carbon dots were well characterized using transmission electron microscopy (TEM), X-ray diffraction (XRD), SEM-EDS, FTIR, UV-visible and fluorescence spectroscopies. N-Doped carbon dots exhibited bright emission with a quantum yield of 11 %. Detailed study of their optical properties revealed their excellent property of resistance to photo bleaching, high ionic strength and solution pH. Further they exhibited excitation dependent emission behaviour, high aqueous solubility and a long shelf life of 60 days. This strong fluorescence emission combined with high stability make N-doped carbon dots a promising fluorescent probe for wide range of applications.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S.N. Baker and G.A. Baker, Angew. Chem. Int. Ed., 49, 6726 (2010); https://doi.org/10.1002/anie.200906623.
- S.Y. Lim, W. Shen and Z. Gao, Chem. Soc. Rev., 44, 362 (2015); https://doi.org/10.1039/C4CS00269E.
- J. Wang and J. Qiu, J. Mater. Sci., 51, 4728 (2016); https://doi.org/10.1007/s10853-016-9797-7.
- O. Kargbo, Y. Jin and S.-N. Ding, Curr. Anal. Chem., 11, 4 (2014); https://doi.org/10.2174/1573411010666141010160217.
- K. Dimos, Curr. Org. Chem., 20, 682 (2016); https://doi.org/10.2174/1385272819666150730220948.
- P. Zuo, X. Lu, Z. Sun, Y. Guo and H. He, Mikrochim. Acta, 183, 519 (2016); https://doi.org/10.1007/s00604-015-1705-3.
- W. Liu, C. Li, Y. Ren, X. Sun, W. Pan, Y. Li, J. Wang and W. Wang, J. Mater. Chem. B Mater. Biol. Med., 4, 5772 (2016); https://doi.org/10.1039/C6TB00976J.
- Z.L. Wu, Z.X. Liu and Y.H. Yuan, J. Mater. Chem. B Mater. Biol. Med., 5, 3794 (2017); https://doi.org/10.1039/C7TB00363C.
- A.J. Wang, H. Li, H. Huang, Z.S. Qian and J.J. Feng, J. Mater. Chem. C Mater. Opt. Electron. Devices, 4, 8146 (2016); https://doi.org/10.1039/C6TC02330D.
- R. Bandi, R. Dadigala, B.R. Gangapuram and V. Guttena, J. Photochem. Photobiol. B: Biol., 178, 330 (2017); https://doi.org/10.1016/j.jphotobiol.2017.11.010.
- Y. Park, J. Yoo, B. Lim, W. Kwon and S.W. Rhee, J. Mater. Chem. A Mater. Energy Sustain., 4, 11582 (2016); https://doi.org/10.1039/C6TA04813G.
- X. Li, M. Rui, J. Song, Z. Shen and H. Zeng, Adv. Funct. Mater., 25, 4929 (2015); https://doi.org/10.1002/adfm.201501250.
- J. Zhou, H. Zhou, J. Tang, S. Deng, F. Yan, W. Li and M. Qu, Mikrochim. Acta, 184, 343 (2017); https://doi.org/10.1007/s00604-016-2043-9.
- H. Zhu, X. Wang, Y. Li, Z. Wang, F. Yang and X. Yang, Chem. Commun., 5118 (2009); https://doi.org/10.1039/b907612c.
- Y. Zhang, Y. Wang, X. Feng, F. Zhang, Y. Yang and X. Liu, Appl. Surf. Sci., 387, 1236 (2016); https://doi.org/10.1016/j.apsusc.2016.07.048.
- R. Bandi, N.P. Devulapalli, R. Dadigala, B.R. Gangapuram and V. Guttena, ACS Omega, 3, 13454 (2018); https://doi.org/10.1021/acsomega.8b01743.
- R. Bandi, B.R. Gangapuram, R. Dadigala, R. Eslavath, S.S. Singh and V. Guttena, RSC Adv., 6, 28633 (2016); https://doi.org/10.1039/C6RA01669C.
- X. Sun, J. He, S. Yang, M. Zheng, Y. Wang, S. Ma and H. Zheng, Bol. Biol., 175, 219 (2017).
- H. Liu, T. Ye and C. Mao, Angew. Chem. Int. Ed., 46, 6473 (2007); https://doi.org/10.1002/anie.200701271.
- D. Sun, R. Ban, P.H. Zhang, G.H. Wu, J.R. Zhang and J.J. Zhu, Carbon N. Y., 64, 424 (2013); https://doi.org/10.1016/j.carbon.2013.07.095.
- L. Tian, D. Ghosh, W. Chen, S. Pradhan, X. Chang and S. Chen, Chem. Mater., 21, 2803 (2009); https://doi.org/10.1021/cm900709w.
- Y.H. Yuan, Z.X. Liu, R.S. Li, H.Y. Zou, M. Lin, H. Liu and C.Z. Huang, Nanoscale, 8, 6770 (2016); https://doi.org/10.1039/C6NR00402D.
- A. Sachdev and P. Gopinath, Analyst, 140, 4260 (2015); https://doi.org/10.1039/C5AN00454C.
- Z.Q. Xu, J.Y. Lan, J.C. Jin, T. Gao, L.L. Pan, F.L. Jiang and Y. Liu, Colloids Surf. B Biointerfaces, 130, 207 (2015); https://doi.org/10.1016/j.colsurfb.2015.04.012.
References
S.N. Baker and G.A. Baker, Angew. Chem. Int. Ed., 49, 6726 (2010); https://doi.org/10.1002/anie.200906623.
S.Y. Lim, W. Shen and Z. Gao, Chem. Soc. Rev., 44, 362 (2015); https://doi.org/10.1039/C4CS00269E.
J. Wang and J. Qiu, J. Mater. Sci., 51, 4728 (2016); https://doi.org/10.1007/s10853-016-9797-7.
O. Kargbo, Y. Jin and S.-N. Ding, Curr. Anal. Chem., 11, 4 (2014); https://doi.org/10.2174/1573411010666141010160217.
K. Dimos, Curr. Org. Chem., 20, 682 (2016); https://doi.org/10.2174/1385272819666150730220948.
P. Zuo, X. Lu, Z. Sun, Y. Guo and H. He, Mikrochim. Acta, 183, 519 (2016); https://doi.org/10.1007/s00604-015-1705-3.
W. Liu, C. Li, Y. Ren, X. Sun, W. Pan, Y. Li, J. Wang and W. Wang, J. Mater. Chem. B Mater. Biol. Med., 4, 5772 (2016); https://doi.org/10.1039/C6TB00976J.
Z.L. Wu, Z.X. Liu and Y.H. Yuan, J. Mater. Chem. B Mater. Biol. Med., 5, 3794 (2017); https://doi.org/10.1039/C7TB00363C.
A.J. Wang, H. Li, H. Huang, Z.S. Qian and J.J. Feng, J. Mater. Chem. C Mater. Opt. Electron. Devices, 4, 8146 (2016); https://doi.org/10.1039/C6TC02330D.
R. Bandi, R. Dadigala, B.R. Gangapuram and V. Guttena, J. Photochem. Photobiol. B: Biol., 178, 330 (2017); https://doi.org/10.1016/j.jphotobiol.2017.11.010.
Y. Park, J. Yoo, B. Lim, W. Kwon and S.W. Rhee, J. Mater. Chem. A Mater. Energy Sustain., 4, 11582 (2016); https://doi.org/10.1039/C6TA04813G.
X. Li, M. Rui, J. Song, Z. Shen and H. Zeng, Adv. Funct. Mater., 25, 4929 (2015); https://doi.org/10.1002/adfm.201501250.
J. Zhou, H. Zhou, J. Tang, S. Deng, F. Yan, W. Li and M. Qu, Mikrochim. Acta, 184, 343 (2017); https://doi.org/10.1007/s00604-016-2043-9.
H. Zhu, X. Wang, Y. Li, Z. Wang, F. Yang and X. Yang, Chem. Commun., 5118 (2009); https://doi.org/10.1039/b907612c.
Y. Zhang, Y. Wang, X. Feng, F. Zhang, Y. Yang and X. Liu, Appl. Surf. Sci., 387, 1236 (2016); https://doi.org/10.1016/j.apsusc.2016.07.048.
R. Bandi, N.P. Devulapalli, R. Dadigala, B.R. Gangapuram and V. Guttena, ACS Omega, 3, 13454 (2018); https://doi.org/10.1021/acsomega.8b01743.
R. Bandi, B.R. Gangapuram, R. Dadigala, R. Eslavath, S.S. Singh and V. Guttena, RSC Adv., 6, 28633 (2016); https://doi.org/10.1039/C6RA01669C.
X. Sun, J. He, S. Yang, M. Zheng, Y. Wang, S. Ma and H. Zheng, Bol. Biol., 175, 219 (2017).
H. Liu, T. Ye and C. Mao, Angew. Chem. Int. Ed., 46, 6473 (2007); https://doi.org/10.1002/anie.200701271.
D. Sun, R. Ban, P.H. Zhang, G.H. Wu, J.R. Zhang and J.J. Zhu, Carbon N. Y., 64, 424 (2013); https://doi.org/10.1016/j.carbon.2013.07.095.
L. Tian, D. Ghosh, W. Chen, S. Pradhan, X. Chang and S. Chen, Chem. Mater., 21, 2803 (2009); https://doi.org/10.1021/cm900709w.
Y.H. Yuan, Z.X. Liu, R.S. Li, H.Y. Zou, M. Lin, H. Liu and C.Z. Huang, Nanoscale, 8, 6770 (2016); https://doi.org/10.1039/C6NR00402D.
A. Sachdev and P. Gopinath, Analyst, 140, 4260 (2015); https://doi.org/10.1039/C5AN00454C.
Z.Q. Xu, J.Y. Lan, J.C. Jin, T. Gao, L.L. Pan, F.L. Jiang and Y. Liu, Colloids Surf. B Biointerfaces, 130, 207 (2015); https://doi.org/10.1016/j.colsurfb.2015.04.012.