Copyright (c) 2025 Alphonse Lazer, Rajesh kumar N, Vikram M, Bharath Samannan, Jeyabalan Thavasikani

This work is licensed under a Creative Commons Attribution 4.0 International License.
Synthesis, Characterization of Transition Metal (Mn, V) based Silverton Type Anion and its Antioxidant and Antimicrobial Studies
Corresponding Author(s) : Jeyabalan Thavasikani
Asian Journal of Chemistry,
Vol. 37 No. 9 (2025): Vol 37 Issue 9, 2025
Abstract
Transition metals (Mn, V) based oxo-anions (hybrid materials) were synthesized and characterized by X-ray powder diffraction, UV-visible and infrared spectral analysis. Metal-based polyoxo anion (POM) hybrid materials reflect stronger antioxidant potential as indicated by their higher DPPH scavenging activity. The synthesized POM compounds also exhibit enhanced bacterial activity of 21 ± 2 and 17 ± 3 µg/mL against Staphylococcus aureus (Gram-positive) and Escherichia coli (Gram-negative), respectively. The efficacy of the synthesized hybrid materials can be attributed to the synergistic effects of the cations and oxo-anions, which lead to more potent derivatives with a broader spectrum of antibacterial activity.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- B. Samannan and J. Thavasikani, Inorg. Chem. Commun., 170, 113162 (2024); https://doi.org/10.1016/j.inoche.2024.113162
- K. Yonesato, D. Yanai, K. Yamaguchi and K. Suzuki, Chem. Eur. J., 31, e202500877 (2025); https://doi.org/10.1002/chem.202500877
- K. Li, T. Liu, J. Ying, A. Tian and X. Wang, J. Mater. Chem. A, 12, 13576 (2024); https://doi.org/10.1039/D4TA01636J
- Y. Zhang, Y. Li, H. Guo, Y. Guob and R. Song, Mater. Chem. Front., 8, 732 (2024); https://doi.org/10.1039/D3QM01000G
- M. Moghadasi, M. Abbasi, M. Mousavi and M. Mirzaei, Dalton Trans., 54, 6333 (2025); https://doi.org/10.1039/D4DT03428G
- B. Samannan, P. Peter and J. Thavasikani, J. Appl. Surf. Sci. Adv., 100, 359 (2023).
- S. Bharath, A. Lazer, Y.-L. Lin, P. Peter and J. Thavasikani, Spectrochim. Acta A Mol. Biomol. Spectrosc., 299, 122868 (2023); https://doi.org/10.1016/j.saa.2023.122868
- R. Murugesan, P. Sami, T. Jeyabalan and A. Shunmugasundaram, Transition Met. Chem., 23, 583 (1998); https://doi.org/10.1023/A:1006972301876
- M.T. Pope, M. Sadakane and U. Kortz, Eur. J. Inorg. Chem., 2019, 340 (2019); https://doi.org/10.1002/ejic.201801543
- B. Samannan, J. Selvam, Y.-L. Lin, P. Peter and J. Thavasikani, Turk. J. Chem., 47, 364 (2023); https://doi.org/10.55730/1300-0527.3543
- R. Murugesan, T. Jeyabalan and P. Sami., Proc. Indian. Acad. Sci., 110 7 (1998); https://doi.org/10.1007/BF02871905
- M.R. Horn, A. Singh, S. Alomari, S. Goberna-Ferrón, R. Benages-Vilau, N. Chodankar, N. Motta, K. Ostrikov, J. MacLeod, P. Sonar, P. Gomez-Romero and D. Dubal, Energy Environ. Sci., 14, 1652 (2021); ttps://doi.org/10.1039/D0EE03407J
- N.I. Gumerova and A. Rompel, Inorg. Chem., 60, 6109 (2021); https://doi.org/10.1021/acs.inorgchem.1c00125
- L. Yao, Z. Long, Z. Chen, Q. Cheng, Y. Liao and M. Tian, Membranes, 10, 214 (2020); https://doi.org/10.3390/membranes10090214
- M. Zhang, X. Xin, Y. Feng, J. Zhang, H. Lv and G.-Y. Yang, Appl. Catal. B, 303, 120893 (2022); https://doi.org/10.1016/j.apcatb.2021.120893
- C. Streb, K. Kastner and J. Tucher, Phys. Sci. Rev., 4, 20170177 (2019); https://doi.org/10.1515/psr-2017-0177
- P.-E. Car and G.R. Patzke, Inorganics, 3, 511 (2015); https://doi.org/10.3390/inorganics3040511
- S. Lis, J. Alloys Compd., 300–301, 88 (2000); https://doi.org/10.1016/S0925-8388(99)00736-7
- M. Xu, C. Liu, Y. Wang, J. Wang, J. Feng, and J. Sha, J. Clust. Sci., 32, 1543 (2021); https://doi.org/10.1007/s10876-020-01845-0
- T. Jeyabalan, P. Sami, A. Shunmugasundaram and R. Murugesan, Spectrochim. Acta A Mol. Biomol. Spectrosc., 55, 2187 (1999); https://doi.org/10.1016/S1386-1425(99)00015-3
- T. Quanten, P. Shestakova, D. Van Den Bulck, C. Kirschhock and T.N. Parac-Vogt, Chem. Eur. J., 22, 3775 (2016); https://doi.org/10.1002/chem.201503976
- M.R. Horn, A. Singh, S. Alomari, S. Goberna-Ferron, R. Benages-Vilau, N. Chodankar, N. Motta, K.K. Ostrikov, J. MacLeod, P. Sonar, P. Gomez-Romero and D. Dubal, Energy Environ. Sci., 14, 1652 (2021); https://doi.org/10.1039/D0EE03407J
- J.-C. Liu, J.-W. Zhao, C. Streb and Y.-F. Song, Coord. Chem. Rev., 471, 214734 (2022); https://doi.org/10.1016/j.ccr.2022.214734
- Z. Liang, H. Cheng and Q. Mao, J. Mol. Liq., 121, 483 (2023).
- M. Jamie Cameron, Sharad S.A, Guillaume Izzet, Chem. Soc. Rev., •••, 293 (2022).
References
B. Samannan and J. Thavasikani, Inorg. Chem. Commun., 170, 113162 (2024); https://doi.org/10.1016/j.inoche.2024.113162
K. Yonesato, D. Yanai, K. Yamaguchi and K. Suzuki, Chem. Eur. J., 31, e202500877 (2025); https://doi.org/10.1002/chem.202500877
K. Li, T. Liu, J. Ying, A. Tian and X. Wang, J. Mater. Chem. A, 12, 13576 (2024); https://doi.org/10.1039/D4TA01636J
Y. Zhang, Y. Li, H. Guo, Y. Guob and R. Song, Mater. Chem. Front., 8, 732 (2024); https://doi.org/10.1039/D3QM01000G
M. Moghadasi, M. Abbasi, M. Mousavi and M. Mirzaei, Dalton Trans., 54, 6333 (2025); https://doi.org/10.1039/D4DT03428G
B. Samannan, P. Peter and J. Thavasikani, J. Appl. Surf. Sci. Adv., 100, 359 (2023).
S. Bharath, A. Lazer, Y.-L. Lin, P. Peter and J. Thavasikani, Spectrochim. Acta A Mol. Biomol. Spectrosc., 299, 122868 (2023); https://doi.org/10.1016/j.saa.2023.122868
R. Murugesan, P. Sami, T. Jeyabalan and A. Shunmugasundaram, Transition Met. Chem., 23, 583 (1998); https://doi.org/10.1023/A:1006972301876
M.T. Pope, M. Sadakane and U. Kortz, Eur. J. Inorg. Chem., 2019, 340 (2019); https://doi.org/10.1002/ejic.201801543
B. Samannan, J. Selvam, Y.-L. Lin, P. Peter and J. Thavasikani, Turk. J. Chem., 47, 364 (2023); https://doi.org/10.55730/1300-0527.3543
R. Murugesan, T. Jeyabalan and P. Sami., Proc. Indian. Acad. Sci., 110 7 (1998); https://doi.org/10.1007/BF02871905
M.R. Horn, A. Singh, S. Alomari, S. Goberna-Ferrón, R. Benages-Vilau, N. Chodankar, N. Motta, K. Ostrikov, J. MacLeod, P. Sonar, P. Gomez-Romero and D. Dubal, Energy Environ. Sci., 14, 1652 (2021); ttps://doi.org/10.1039/D0EE03407J
N.I. Gumerova and A. Rompel, Inorg. Chem., 60, 6109 (2021); https://doi.org/10.1021/acs.inorgchem.1c00125
L. Yao, Z. Long, Z. Chen, Q. Cheng, Y. Liao and M. Tian, Membranes, 10, 214 (2020); https://doi.org/10.3390/membranes10090214
M. Zhang, X. Xin, Y. Feng, J. Zhang, H. Lv and G.-Y. Yang, Appl. Catal. B, 303, 120893 (2022); https://doi.org/10.1016/j.apcatb.2021.120893
C. Streb, K. Kastner and J. Tucher, Phys. Sci. Rev., 4, 20170177 (2019); https://doi.org/10.1515/psr-2017-0177
P.-E. Car and G.R. Patzke, Inorganics, 3, 511 (2015); https://doi.org/10.3390/inorganics3040511
S. Lis, J. Alloys Compd., 300–301, 88 (2000); https://doi.org/10.1016/S0925-8388(99)00736-7
M. Xu, C. Liu, Y. Wang, J. Wang, J. Feng, and J. Sha, J. Clust. Sci., 32, 1543 (2021); https://doi.org/10.1007/s10876-020-01845-0
T. Jeyabalan, P. Sami, A. Shunmugasundaram and R. Murugesan, Spectrochim. Acta A Mol. Biomol. Spectrosc., 55, 2187 (1999); https://doi.org/10.1016/S1386-1425(99)00015-3
T. Quanten, P. Shestakova, D. Van Den Bulck, C. Kirschhock and T.N. Parac-Vogt, Chem. Eur. J., 22, 3775 (2016); https://doi.org/10.1002/chem.201503976
M.R. Horn, A. Singh, S. Alomari, S. Goberna-Ferron, R. Benages-Vilau, N. Chodankar, N. Motta, K.K. Ostrikov, J. MacLeod, P. Sonar, P. Gomez-Romero and D. Dubal, Energy Environ. Sci., 14, 1652 (2021); https://doi.org/10.1039/D0EE03407J
J.-C. Liu, J.-W. Zhao, C. Streb and Y.-F. Song, Coord. Chem. Rev., 471, 214734 (2022); https://doi.org/10.1016/j.ccr.2022.214734
Z. Liang, H. Cheng and Q. Mao, J. Mol. Liq., 121, 483 (2023).
M. Jamie Cameron, Sharad S.A, Guillaume Izzet, Chem. Soc. Rev., •••, 293 (2022).