Copyright (c) 2025 Lonibala Rajkumari, S. Saya Devi , Rodi Laishram, Amar Ningthoujam, Somananda Meetei Soubam, Sureshkumar Singh S.

This work is licensed under a Creative Commons Attribution 4.0 International License.
Synthesis, Spectral Characterization, Density Functional Theory Studies and Antidiabetic Activities of Copper(II) Complexes of Schiff Bases Derived from N-Benzoyl Glycylhydrazide
Corresponding Author(s) : Rajkumari Lonibala
Asian Journal of Chemistry,
Vol. 37 No. 9 (2025): Vol 37 Issue 9, 2025
Abstract
Two new Schiff bases, (E)-N-(2-(2-(2-hydroxy-3-methoxybenzylidene)hydrazineyl)-2-oxyethyl)benzylidene)hydrazineyl)-2-oxyethyl)-benzamide (H2L1), (E)-N-(2-((2-hydroxynapthalen-1-yl)methylene)hydrazineyl)-2-oxyethyl)benzamide (H2L2) and their Cu(II) complexes were synthesized and characterized by elemental analyses, molar conductance, thermal analysis, magnetic susceptibility, UV-Vis, IR, EPR and mass spectroscopic data. Formation of Cu(II) complexes having 1:1 metal: ligand stoichiometry was ascertained from the elemental and thermogravemetric analyses. The observed magnetic moment is consistent with the expected value for Cu(II) (d9) complexes, which typically exhibit one unpaired electron. Spectral and DFT studies suggest pentacoordinated geometries for the complexes in which the ligands act as a tridentate species bonding through the carbonyl-O, azomethine-N and phenolate/phenolic-O. The molecular geometries of the complexes were thoroughly optimized using the Global Hybrid Minnesota functional M06, with the Pople 6-31+G(d,p) basis set for oxygen and nitrogen and the Def2-SVP basis set for hydrogen, carbon and heavy transition metal copper atom in the DFT calculations to improve the balance between accuracy and computational cost. The antidiabetic properties of the ligands and their Cu(II) complexes were investigated, revealing that the complexes exhibited significant enzyme inhibition activity.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- E. Raczuk, B. Dmochowska, J. Samaszko-Fiertek and J. Madaj, Molecules, 27, 787 (2022); https://doi.org/10.3390/molecules27030787
- A.I.A. Soliman, M. Sayed, M.M. Elshanawany, O. Younis, M. Ahmed, A.M. Kamal El-Dean, A.-M.A. Abdel-Wahab, J. Wachtveitl, M. Braun, P. Fatehi and M.S. Tolba, ACS Omega, 7, 10178 (2022); https://doi.org/10.1021/acsomega.1c06636
- M. Arifuzzaman, M.R. Karim, T.A. Siddiquee, A.H. Mirza and M.A. Ali, Int. J. Org. Chem., 03, 81 (2013); https://doi.org/10.4236/ijoc.2013.31009
- E. Sinn and C.M. Harris, Coord. Chem. Rev., 4, 391 (1969); https://doi.org/10.1016/S0010-8545(00)80080-6
- P.B. Sreeja, M.R. Prathapachandra Kurup, A. Kishore and C. Jasmin, Polyhedron, 23, 575 (2004); https://doi.org/10.1016/j.poly.2003.11.005
- P.B. Sreeja and M.R.P. Kurup, Spectrochim. Acta A Mol. Biomol. Spectrosc., 61, 331 (2005); https://doi.org/10.1016/j.saa.2004.04.001
- D. Kovala-Demertzi, A. Domopoulou, M.A. Demertzis, G. Valle and A. Papageorgiou, J. Inorg. Biochem., 68, 147 (1997); https://doi.org/10.1016/S0162-0134(97)00087-1
- D. Kovala-Demertzi, M.A. Demertzis, V. Varagi, A. Papageorgiou, D. Mourelatos, E. Mioglou, Z. Iakovidou and A. Kotsis, Chemotherapy, 44, 421 (1998); https://doi.org/10.1159/000007154
- M. Tümer, H. Köksal, M.K. Sener and S. Serin, Transition Met. Chem., 24, 414 (1999); https://doi.org/10.1023/A:1006973823926
- N. Raman, J. Dhaveethu Raja and A. Sakthivel, J. Chem. Sci., 119, 303 (2007); https://doi.org/10.1007/s12039-007-0041-5
- E.W. Ainscough, A.M. Brodie, A.J. Dobbs, J.D. Ranford and J.M. Waters, Inorg. Chim. Acta, 267, 27 (1998); https://doi.org/10.1016/S0020-1693(97)05548-5
- B. Koçyigit Kaymakçioglu and S. Rollas, Farmaco, 57, 595 (2002); https://doi.org/10.1016/S0014-827X(02)01255-7
- S.N. Pandeya, D. Sriram, G. Nath and E. De Clercq, Farmaco, 54, 624 (1999); https://doi.org/10.1016/S0014-827X(99)00075-0
- E.M. Hodnett and W.J. Dunn, J. Med. Chem., 13, 768 (1970); https://doi.org/10.1021/jm00298a054
- J. Vanèo, J. Marek, Z. Trávníèek, E. Raèanská, J. Muselík and O. Švajlenová, J. Inorg. Biochem., 102, 595 (2008); https://doi.org/10.1016/j.jinorgbio.2007.10.003
- A. Hameed, M. Al-Rashida, M. Uroos, S. Abid Ali and K.M. Khan, Expert Opin. Ther. Pat., 27, 63 (2017); https://doi.org/10.1080/13543776.2017.1252752
- C.M. Sharaby, Spectrochim. Acta A Mol. Biomol. Spectrosc., 66, 1271 (2007); https://doi.org/10.1016/j.saa.2006.05.030
- M. Hosseini, Z. Vaezi, M.R. Ganjali, F. Faridbod, S.D. Abkenar, K. Alizadeh and M. Salavati-Niasari, Spectrochim. Acta A Mol. Biomol. Spectrosc., 75, 978 (2010); https://doi.org/10.1016/j.saa.2009.12.016
- X. Zhong, Z. Li, R. Shi, L. Yan, Y. Zhu and H. Li, ACS Appl. Nano Mater., 5, 13998 (2022); https://doi.org/10.1021/acsanm.2c03477
- J. Costamagna, J. Vargas, R. Latorre, A. Alvarado and G. Mena, Coord. Chem. Rev., 119, 67 (1992); https://doi.org/10.1016/0010-8545(92)80030-U
- P.G. Cozzi, Chem. Soc. Rev., 33, 410 (2004); https://doi.org/10.1039/B307853C
- L.H. Uppadine, J.-P. Gisselbrecht and J.-M. Lehn, Chem. Commun., 718–719, 718 (2004); https://doi.org/10.1039/B315352E
- A. Wood, W. Aris and D.J.R. Brook, Inorg. Chem., 43, 8355 (2004); https://doi.org/10.1021/ic0492688
- M.R. Bermejo, R. Pedrido, A.M. González-Noya, M.J. Romero, M. Vázquez and L. Sorace, New J. Chem., 27, 1753 (2003); https://doi.org/10.1039/B305354G
- S. Naskar, M. Corbella, A.J. Blake and S.K. Chattopadhyay, Dalton Trans., 1150 (2007); https://doi.org/10.1039/b615004g
- R. Ganguly, B. Sreenivasulu and J.J. Vittal, Coord. Chem. Rev., 252, 1027 (2008); https://doi.org/10.1016/j.ccr.2008.01.005
- M.J. O’Donnell, Tetrahedron, 75, 3667 (2019); https://doi.org/10.1016/j.tet.2019.03.029
- A. Anagnostopoulos and S. Hadjispyrou, J. Inorg. Biochem., 57, 279 (1995); https://doi.org/10.1016/0162-0134(94)00033-7
- P.D. Thangjam and L. Rajkumari, J. Chem. Eng. Data, 55, 1166 (2010); https://doi.org/10.1021/je900583g
- T. Devi and R. Lonibala, Asian J. Chem., 22, 5369 (2010).
- T. Devi and R. Lonibala, Orient. J. Chem., 30, 2029 (2014); https://doi.org/10.13005/ojc/300468
- R.K. Lonibala, T.R. Rao and R.K.B. Devi, J. Chem. Sci., 118, 327 (2006); https://doi.org/10.1007/BF02708526
- A. Bhunia, S. Manna, S. Mistri, A. Paul, R.K. Manne, M.K. Santra, V. Bertolasi and S. Chandra Manna, RSC Adv., 5, 67727 (2015); https://doi.org/10.1039/C5RA12324K
- K. Nejati, A. Bakhtiari, R. Bikas and J. Rahimpour, J. Mol. Struct., 1192, 217 (2019); https://doi.org/10.1016/j.molstruc.2019.04.135
- A.V. Marenich, S.V. Jerome, C.J. Cramer and D.G. Truhlar, J. Chem. Theory Comput., 8, 527 (2012); https://doi.org/10.1021/ct200866d
- A.I. Vogel, A Text Book of Quantitative Inorganic Analysis, London: ELBS & Longsman, pp. 358-460 (1961).
- D. Kumar, H. Kumar, J.R. Vedasiromoni and B.C. Pal, Phytochem. Anal., 23, 421 (2012); https://doi.org/10.1002/pca.1375
- B.G. Janesko, K.B. Wiberg, G. Scalmani and M.J. Frisch, J. Chem. Theory Comput., 12, 3185 (2016); https://doi.org/10.1021/acs.jctc.6b00343
- Y. Zhao and D.G. Truhlar, Theor. Chem. Acc., 120, 215 (2008); https://doi.org/10.1007/s00214-007-0310-x
- R. Ditchfield, W.J. Hehre and J.A. Pople, J. Chem. Phys., 54, 724 (1971); https://doi.org/10.1063/1.1674902
- F. Weigend, Phys. Chem. Chem. Phys., 8, 1057 (2006); https://doi.org/10.1039/b515623h
- F. Weigend and R. Ahlrichs, Phys. Chem. Chem. Phys., 7, 3297 (2005); https://doi.org/10.1039/b508541a
- T.R. Rao, M. Sahay and R.C. Aggarwal, Synth. React. Inorg. Met.-Org. Chem., 15, 209 (1985); https://doi.org/10.1080/00945718508059381
- W.J. Geary, Coord. Chem. Rev., 7, 81 (1971); https://doi.org/10.1016/S0010-8545(00)80009-0
- M.L. Dianu, A. Kriza and A.M. Musuc, J. Therm. Anal. Calorim., 112, 585 (2013); https://doi.org/10.1007/s10973-012-2578-x
- G. Bannach, A.B. Siqueira, E.Y. Ionashiro, E.C. Rodrigues and M. Ionashiro, J. Therm. Anal. Calorim., 90, 873 (2007); https://doi.org/10.1007/s10973-005-7060-6
- W. Ferenc and A. Walków-Dziewulska, J. Therm. Anal. Calorim., 63, 865 (2001); https://doi.org/10.1023/A:1010120911658
- L.V. Ababei, A. Kriza, A.M. Musuc, C. Andronescu and E.A. Rogozea, J. Therm. Anal. Calorim., 101, 987 (2010); https://doi.org/10.1007/s10973-009-0560-z
- K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordi-nation Compounds, Wiley: New York, edn. 4 (1986).
- A. Braibanti, F. Dallavalle, M.A. Pellinghelli and E. Leporati, Inorg. Chem., 7, 1430 (1968); https://doi.org/10.1021/ic50065a034
- A.B.P. Lever and H.B. Gray, Acc. Chem. Res., 11, 348 (1978); https://doi.org/10.1021/ar50129a005
- K.B. Gudasi, S.A. Patil, R.S. Vadavi, R.V. Shenoy and M.S. Patil, J. Serb. Chem. Soc., 71, 529 (2006); https://doi.org/10.2298/JSC0605529G
- D.E. Billing and B.J. Hathaway, J. Chem. Phys., 50, 1476 (1969); https://doi.org/10.1063/1.1671216
- B.J. Hathaway and P.G. Hodgson, J. Inorg. Nucl. Chem., 35, 4071 (1973); https://doi.org/10.1016/0022-1902(73)80395-1
- R.C. Van Landschoot, J.A.M. Van Hest and J. Reedijk, J. Inorg. Nucl. Chem., 38, 185 (1976); https://doi.org/10.1016/0022-1902(76)80081-4
- B.A. Goodman and J.B. Raynor, Adv. Inorg. Chem., 13, 135 (1970); https://doi.org/10.1016/S0065-2792(08)60336-2
- D.X. West, J. Inorg. Nucl. Chem., 43, 3169 (1981); https://doi.org/10.1016/0022-1902(81)80082-6
- A. Bencini, I. Bertini, D. Gatteschi and A. Scozzafava, Inorg. Chem., 17, 3194 (1978); https://doi.org/10.1021/ic50189a047
- J.A. Howard, R. Sutcliffe, J.S. Tse and B. Mile, Chem. Phys. Lett., 94, 561 (1983); https://doi.org/10.1016/0009-2614(83)85056-8
- L.V. Azaroff and M.J. Bueger, The Powder Method in X-Ray Crystallography, New York: McGraw Hill (1958).
- P. Debnath, P. Debnath, Th.S. Devi, S.S.K. Singh, A. Bhattacharya, K.S. Singh, M. Roy and T.K. Misra, J. Coord. Chem., 75, 3015 (2022); https://doi.org/10.1080/00958972.2022.2155145
- P. Debnath, K.S. Singh, K.K. Singh, S. Sureshkumar Singh, L. Sieroñ and W. Maniukiewicz, New J. Chem., 44, 5862 (2020); https://doi.org/10.1039/D0NJ00536C
- M. Roy, S. Roy, K.S. Singh, J. Kalita and S.S. Singh, New J. Chem., 40, 1471 (2016); https://doi.org/10.1039/C5NJ02637G
- M. Roy, S. Roy, K.S. Singh, J. Kalita and S.S. Singh, Inorg. Chim. Acta, 439, 164 (2016); https://doi.org/10.1016/j.ica.2015.10.012
- N.H. Nasaruddin, S.N. Ahmad, S.S. Sirat, T.K. Wai, N.A. Zakaria and H. Bahron, J. Mol. Struct., 1232, 130066 (2021); https://doi.org/10.1016/j.molstruc.2021.130066
- A.J. Stasyuk, M. Solà and A.A. Voityuk, Sci. Rep., 8, 2882 (2018); https://doi.org/10.1038/s41598-018-21240-0
References
E. Raczuk, B. Dmochowska, J. Samaszko-Fiertek and J. Madaj, Molecules, 27, 787 (2022); https://doi.org/10.3390/molecules27030787
A.I.A. Soliman, M. Sayed, M.M. Elshanawany, O. Younis, M. Ahmed, A.M. Kamal El-Dean, A.-M.A. Abdel-Wahab, J. Wachtveitl, M. Braun, P. Fatehi and M.S. Tolba, ACS Omega, 7, 10178 (2022); https://doi.org/10.1021/acsomega.1c06636
M. Arifuzzaman, M.R. Karim, T.A. Siddiquee, A.H. Mirza and M.A. Ali, Int. J. Org. Chem., 03, 81 (2013); https://doi.org/10.4236/ijoc.2013.31009
E. Sinn and C.M. Harris, Coord. Chem. Rev., 4, 391 (1969); https://doi.org/10.1016/S0010-8545(00)80080-6
P.B. Sreeja, M.R. Prathapachandra Kurup, A. Kishore and C. Jasmin, Polyhedron, 23, 575 (2004); https://doi.org/10.1016/j.poly.2003.11.005
P.B. Sreeja and M.R.P. Kurup, Spectrochim. Acta A Mol. Biomol. Spectrosc., 61, 331 (2005); https://doi.org/10.1016/j.saa.2004.04.001
D. Kovala-Demertzi, A. Domopoulou, M.A. Demertzis, G. Valle and A. Papageorgiou, J. Inorg. Biochem., 68, 147 (1997); https://doi.org/10.1016/S0162-0134(97)00087-1
D. Kovala-Demertzi, M.A. Demertzis, V. Varagi, A. Papageorgiou, D. Mourelatos, E. Mioglou, Z. Iakovidou and A. Kotsis, Chemotherapy, 44, 421 (1998); https://doi.org/10.1159/000007154
M. Tümer, H. Köksal, M.K. Sener and S. Serin, Transition Met. Chem., 24, 414 (1999); https://doi.org/10.1023/A:1006973823926
N. Raman, J. Dhaveethu Raja and A. Sakthivel, J. Chem. Sci., 119, 303 (2007); https://doi.org/10.1007/s12039-007-0041-5
E.W. Ainscough, A.M. Brodie, A.J. Dobbs, J.D. Ranford and J.M. Waters, Inorg. Chim. Acta, 267, 27 (1998); https://doi.org/10.1016/S0020-1693(97)05548-5
B. Koçyigit Kaymakçioglu and S. Rollas, Farmaco, 57, 595 (2002); https://doi.org/10.1016/S0014-827X(02)01255-7
S.N. Pandeya, D. Sriram, G. Nath and E. De Clercq, Farmaco, 54, 624 (1999); https://doi.org/10.1016/S0014-827X(99)00075-0
E.M. Hodnett and W.J. Dunn, J. Med. Chem., 13, 768 (1970); https://doi.org/10.1021/jm00298a054
J. Vanèo, J. Marek, Z. Trávníèek, E. Raèanská, J. Muselík and O. Švajlenová, J. Inorg. Biochem., 102, 595 (2008); https://doi.org/10.1016/j.jinorgbio.2007.10.003
A. Hameed, M. Al-Rashida, M. Uroos, S. Abid Ali and K.M. Khan, Expert Opin. Ther. Pat., 27, 63 (2017); https://doi.org/10.1080/13543776.2017.1252752
C.M. Sharaby, Spectrochim. Acta A Mol. Biomol. Spectrosc., 66, 1271 (2007); https://doi.org/10.1016/j.saa.2006.05.030
M. Hosseini, Z. Vaezi, M.R. Ganjali, F. Faridbod, S.D. Abkenar, K. Alizadeh and M. Salavati-Niasari, Spectrochim. Acta A Mol. Biomol. Spectrosc., 75, 978 (2010); https://doi.org/10.1016/j.saa.2009.12.016
X. Zhong, Z. Li, R. Shi, L. Yan, Y. Zhu and H. Li, ACS Appl. Nano Mater., 5, 13998 (2022); https://doi.org/10.1021/acsanm.2c03477
J. Costamagna, J. Vargas, R. Latorre, A. Alvarado and G. Mena, Coord. Chem. Rev., 119, 67 (1992); https://doi.org/10.1016/0010-8545(92)80030-U
P.G. Cozzi, Chem. Soc. Rev., 33, 410 (2004); https://doi.org/10.1039/B307853C
L.H. Uppadine, J.-P. Gisselbrecht and J.-M. Lehn, Chem. Commun., 718–719, 718 (2004); https://doi.org/10.1039/B315352E
A. Wood, W. Aris and D.J.R. Brook, Inorg. Chem., 43, 8355 (2004); https://doi.org/10.1021/ic0492688
M.R. Bermejo, R. Pedrido, A.M. González-Noya, M.J. Romero, M. Vázquez and L. Sorace, New J. Chem., 27, 1753 (2003); https://doi.org/10.1039/B305354G
S. Naskar, M. Corbella, A.J. Blake and S.K. Chattopadhyay, Dalton Trans., 1150 (2007); https://doi.org/10.1039/b615004g
R. Ganguly, B. Sreenivasulu and J.J. Vittal, Coord. Chem. Rev., 252, 1027 (2008); https://doi.org/10.1016/j.ccr.2008.01.005
M.J. O’Donnell, Tetrahedron, 75, 3667 (2019); https://doi.org/10.1016/j.tet.2019.03.029
A. Anagnostopoulos and S. Hadjispyrou, J. Inorg. Biochem., 57, 279 (1995); https://doi.org/10.1016/0162-0134(94)00033-7
P.D. Thangjam and L. Rajkumari, J. Chem. Eng. Data, 55, 1166 (2010); https://doi.org/10.1021/je900583g
T. Devi and R. Lonibala, Asian J. Chem., 22, 5369 (2010).
T. Devi and R. Lonibala, Orient. J. Chem., 30, 2029 (2014); https://doi.org/10.13005/ojc/300468
R.K. Lonibala, T.R. Rao and R.K.B. Devi, J. Chem. Sci., 118, 327 (2006); https://doi.org/10.1007/BF02708526
A. Bhunia, S. Manna, S. Mistri, A. Paul, R.K. Manne, M.K. Santra, V. Bertolasi and S. Chandra Manna, RSC Adv., 5, 67727 (2015); https://doi.org/10.1039/C5RA12324K
K. Nejati, A. Bakhtiari, R. Bikas and J. Rahimpour, J. Mol. Struct., 1192, 217 (2019); https://doi.org/10.1016/j.molstruc.2019.04.135
A.V. Marenich, S.V. Jerome, C.J. Cramer and D.G. Truhlar, J. Chem. Theory Comput., 8, 527 (2012); https://doi.org/10.1021/ct200866d
A.I. Vogel, A Text Book of Quantitative Inorganic Analysis, London: ELBS & Longsman, pp. 358-460 (1961).
D. Kumar, H. Kumar, J.R. Vedasiromoni and B.C. Pal, Phytochem. Anal., 23, 421 (2012); https://doi.org/10.1002/pca.1375
B.G. Janesko, K.B. Wiberg, G. Scalmani and M.J. Frisch, J. Chem. Theory Comput., 12, 3185 (2016); https://doi.org/10.1021/acs.jctc.6b00343
Y. Zhao and D.G. Truhlar, Theor. Chem. Acc., 120, 215 (2008); https://doi.org/10.1007/s00214-007-0310-x
R. Ditchfield, W.J. Hehre and J.A. Pople, J. Chem. Phys., 54, 724 (1971); https://doi.org/10.1063/1.1674902
F. Weigend, Phys. Chem. Chem. Phys., 8, 1057 (2006); https://doi.org/10.1039/b515623h
F. Weigend and R. Ahlrichs, Phys. Chem. Chem. Phys., 7, 3297 (2005); https://doi.org/10.1039/b508541a
T.R. Rao, M. Sahay and R.C. Aggarwal, Synth. React. Inorg. Met.-Org. Chem., 15, 209 (1985); https://doi.org/10.1080/00945718508059381
W.J. Geary, Coord. Chem. Rev., 7, 81 (1971); https://doi.org/10.1016/S0010-8545(00)80009-0
M.L. Dianu, A. Kriza and A.M. Musuc, J. Therm. Anal. Calorim., 112, 585 (2013); https://doi.org/10.1007/s10973-012-2578-x
G. Bannach, A.B. Siqueira, E.Y. Ionashiro, E.C. Rodrigues and M. Ionashiro, J. Therm. Anal. Calorim., 90, 873 (2007); https://doi.org/10.1007/s10973-005-7060-6
W. Ferenc and A. Walków-Dziewulska, J. Therm. Anal. Calorim., 63, 865 (2001); https://doi.org/10.1023/A:1010120911658
L.V. Ababei, A. Kriza, A.M. Musuc, C. Andronescu and E.A. Rogozea, J. Therm. Anal. Calorim., 101, 987 (2010); https://doi.org/10.1007/s10973-009-0560-z
K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordi-nation Compounds, Wiley: New York, edn. 4 (1986).
A. Braibanti, F. Dallavalle, M.A. Pellinghelli and E. Leporati, Inorg. Chem., 7, 1430 (1968); https://doi.org/10.1021/ic50065a034
A.B.P. Lever and H.B. Gray, Acc. Chem. Res., 11, 348 (1978); https://doi.org/10.1021/ar50129a005
K.B. Gudasi, S.A. Patil, R.S. Vadavi, R.V. Shenoy and M.S. Patil, J. Serb. Chem. Soc., 71, 529 (2006); https://doi.org/10.2298/JSC0605529G
D.E. Billing and B.J. Hathaway, J. Chem. Phys., 50, 1476 (1969); https://doi.org/10.1063/1.1671216
B.J. Hathaway and P.G. Hodgson, J. Inorg. Nucl. Chem., 35, 4071 (1973); https://doi.org/10.1016/0022-1902(73)80395-1
R.C. Van Landschoot, J.A.M. Van Hest and J. Reedijk, J. Inorg. Nucl. Chem., 38, 185 (1976); https://doi.org/10.1016/0022-1902(76)80081-4
B.A. Goodman and J.B. Raynor, Adv. Inorg. Chem., 13, 135 (1970); https://doi.org/10.1016/S0065-2792(08)60336-2
D.X. West, J. Inorg. Nucl. Chem., 43, 3169 (1981); https://doi.org/10.1016/0022-1902(81)80082-6
A. Bencini, I. Bertini, D. Gatteschi and A. Scozzafava, Inorg. Chem., 17, 3194 (1978); https://doi.org/10.1021/ic50189a047
J.A. Howard, R. Sutcliffe, J.S. Tse and B. Mile, Chem. Phys. Lett., 94, 561 (1983); https://doi.org/10.1016/0009-2614(83)85056-8
L.V. Azaroff and M.J. Bueger, The Powder Method in X-Ray Crystallography, New York: McGraw Hill (1958).
P. Debnath, P. Debnath, Th.S. Devi, S.S.K. Singh, A. Bhattacharya, K.S. Singh, M. Roy and T.K. Misra, J. Coord. Chem., 75, 3015 (2022); https://doi.org/10.1080/00958972.2022.2155145
P. Debnath, K.S. Singh, K.K. Singh, S. Sureshkumar Singh, L. Sieroñ and W. Maniukiewicz, New J. Chem., 44, 5862 (2020); https://doi.org/10.1039/D0NJ00536C
M. Roy, S. Roy, K.S. Singh, J. Kalita and S.S. Singh, New J. Chem., 40, 1471 (2016); https://doi.org/10.1039/C5NJ02637G
M. Roy, S. Roy, K.S. Singh, J. Kalita and S.S. Singh, Inorg. Chim. Acta, 439, 164 (2016); https://doi.org/10.1016/j.ica.2015.10.012
N.H. Nasaruddin, S.N. Ahmad, S.S. Sirat, T.K. Wai, N.A. Zakaria and H. Bahron, J. Mol. Struct., 1232, 130066 (2021); https://doi.org/10.1016/j.molstruc.2021.130066
A.J. Stasyuk, M. Solà and A.A. Voityuk, Sci. Rep., 8, 2882 (2018); https://doi.org/10.1038/s41598-018-21240-0