Copyright (c) 2025 Arvind Kumar

This work is licensed under a Creative Commons Attribution 4.0 International License.
Anticorrosivity of Electroless Ni-P-TiO2 Nanoplatings against Hydrogen Peroxide Solution
Corresponding Author(s) : Arvind Kumar
Asian Journal of Chemistry,
Vol. 37 No. 9 (2025): Vol 37 Issue 9, 2025
Abstract
The pollution regulator measurements have resulted replacement of chlorine/chlorine dioxide through hydrogen peroxides as bleaching chemicals specially in paper, dye and textile industries. Adaptation of changed chemicals, generally affects the corrosion aspects, suitability of existing plant metallurgy, materials of construction of equipment and environmental conditions. The surface platings besides non-sactrificial, recently have acted as an obstacle between steel substrates and corrosive environments. Accordingly, a long-term immersion and electrochemical corrosion tests were conducted on steels (MS, SS 316L) and electroless plated Ni-P and Ni-P-TiO2 nanomaterials in hydrogen peroxide solutions at pH 9.1 ± 0.1 and an E-pH was diagram drawn for H2O-H2O2 system alongside Shannon entropy values were calculated by MATLAB software and are used to understand the corrosivity of the peroxide media and protection mechanism of tested materials. On the basis of long-term immersion corrosion test, electrochemical corrosion tests, an H2O-H2O2 E-pH diagram, Shannon entropy values and cost to mechanical properties; the different tested materials may be graded in terms of their resistance against uniform/localized type corrosion for handling peroxide test media in following manner: Ni-P-TiO2 as-plated > Ni-P-TiO2 heated > Ni-P as-plated > Ni-P heated ~SS316L > MS. The better cost/strength ratio of Ni-P-TiO2 platings make these materials as more suitable for handling peroxide media with/without Cl content.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- R. Aslam, M. Mobin, S. Zehra and J. Aslam, J. Mol. Liq., 364, 119992 (2022); https://doi.org/10.1016/j.molliq.2022.119992
- B. Fotovvati, N. Namdari and A. Dehghanghadikolaei, J. Manuf. Mater. Process., 3, 28 (2019); https://doi.org/10.3390/jmmp3010028
- A. Al-Azzawi and P. Baumli, Mater. Sci. Eng., 40, 26 (2015).
- J. Jeevanandam, A. Barhoum, Y.S. Chan, A. Dufresne and M.K. Danquah, Beilstein J. Nanotechnol., 9, 1050 (2018); https://doi.org/10.3762/bjnano.9.98
- J. Sudagar, J. Lian and W. Sha, J. Alloys Compd., 571, 183 (2013); https://doi.org/10.1016/j.jallcom.2013.03.107
- D. Seifzadeh and Z. Rajabalizadeh, Surf. Coat. Technol., 218, 119 (2013); https://doi.org/10.1016/j.surfcoat.2012.12.039
- Y. De Hazan, F. Knies, D. Burnat, T. Graule, Y. Yamada-Pittini, C. Aneziris and M. Kraak, J. Colloid Interface Sci., 365, 163 (2012); https://doi.org/10.1016/j.jcis.2011.09.032
- M. Ram, S. Sharma, A. Ansari and A.K. Sharma, AIP Conf. Proc. 2335, 080010 (2021); https://doi.org/10.1063/5.0043715
- H. Luo, M. Leitch, H. Zeng and J.-L. Luo, Mater. Today Phys., 4, 36 (2018); https://doi.org/10.1016/j.mtphys.2018.03.001
- D.R. Dhakal, G. Gyawali, Y.K. Kshetri, J.-H. Choi and S.W. Lee, Surf. Coat. Technol., 381, 125135 (2020); https://doi.org/10.1016/j.surfcoat.2019.125135
- A. Mukhopadhyay, T.K. Barman and P. Sahoo, Tribol. Trans., 61, 41 (2018); https://doi.org/10.1080/10402004.2016.1271929
- D.H. Xia, C. Deng, D. Macdonald, S. Jamali, D. Mills, J.L. Luo, M.G. Strebl, M. Amiri, W. Jin, S. Song and W. Hu, J. Mater. Sci. Technol., 112, 151 (2022); https://doi.org/10.1016/j.jmst.2021.11.004
- U.D. Bagale, S.H. Sonawane, B.A. Bhanvase, R.D. Kulkarni and P.R. Gogate, Green Process Synth., 7, 147 (2018); https://doi.org/10.1515/gps-2016-0160
- T. Chen, B. Wang, Z. Qi, Z. Guo, Y. Tian and F. Meng, ACS Appl. Nano Mater., 5, 9780 (2022); https://doi.org/10.1021/acsanm.2c01993
- Y. Li, N. Kawashima, J. Li, A.P. Chandra and A.R. Gerson, Adv. Colloid Interface Sci., 1, 197-198 (2013); https://doi.org/10.1016/j.cis.2013.03.004
- H. Nazari, G.B. Darband and R. Arefinia, J. Mater. Sci., 58, 4292 (2023); https://doi.org/10.1007/s10853-023-08281-1
- M.A. Shoeib, M.M. Kamel, S.M. Rashwan and O.M. Hafez, Surf. Interface Anal., 47, 672 (2015); https://doi.org/10.1002/sia.5764
- J. Novakovic, P. Vassiliou, K.L. Samara and T. Argyropoulos, Surf. Coat. Tech., 201, 895 (2006); https://doi.org/10.1016/j.surfcoat.2006.01.005
- H. Chakhtouna, H. Benzeid, N. Zari, A. Qaiss and R. Bouhfid, Environ. Sci. Pollut. Res. Int., 28, 44638 (2021); https://doi.org/10.1007/s11356-021-14996-y
- Y. Nosaka, Catalysts, 12, 1557 (2022); https://doi.org/10.3390/catal12121557
- M.T. Noman, M.A. Ashraf and A. Ali, Environ. Sci. Pollut. Res. Int., 26, 3262 (2019); https://doi.org/10.1007/s11356-018-3884-z
- Q. Zhao, C. Liu, X. Su, S. Zhang, W. Song, S. Wang, G. Ning, J. Ye, Y. Lin and W. Gong, Appl. Surf. Sci., 274, 101 (2013); https://doi.org/10.1016/j.apsusc.2013.02.112
- W. Chen, W. Gao and Y. He, Surf. Coat. Technol., 204, 2493 (2010); https://doi.org/10.1016/j.surfcoat.2010.01.032
- M.S. Hasan, F. Zemajtis, M. Nosonovsky and K. Sobolev, J. Tribol., 144, 081402 (2022); https://doi.org/10.1115/1.4053777
- S. Akhtar, K. Shahzad, S. Mushtaq, I. Ali, M.H. Rafe and S.M. Fazal Ul-Karim, Mater. Res. Express, 6, 105409 (2019); https://doi.org/10.1088/2053-1591/ab3b27
- A. Bachvarova-Nedelcheva, R. Iordanova, A. Naydenov, A. Stoyanova, N. Georgieva, V. Nemska and T. Foteva, Catalysts, 13, 257 (2023); https://doi.org/10.3390/catal13020257
- P.M. Kallel, Z. Anther, M. Masseoud, S. Vesco, M. Barletta and k. Elleuch, Ceramics Int., 47, 10 (202 1); https://doi.org/10.1016/j.ceramint.2021.02.023
- G. John, M.E. Sahayaraj, J.T.W. Jappes and S.J. Leon, Period. Mineral., 92, 67 (2023); https://doi.org/10.37896/pd92.2/9224
- I. Vranken, J. Baudry, M. Aubinet, M. Visser and J. Bogaert, Landsc. Ecol., 30, 51 (2015); https://doi.org/10.1007/s10980-014-0105-0
- X. Zhang, X. Dai, L. Gao, D. Xu, H. Wan, Y. Wang and L. Yan, Chem. Soc. Rev., 52, 6806 (2023); https://doi.org/10.1039/D3CS00347G
- J.L. Braun, C.M. Rost, M. Lim, A. Giri, D.H. Olson, G.N. Kotsonis, G. Stan, D.W. Brenner, J.-P. Maria and P.E. Hopkins, Adv. Mater., 30, 1805004 (2018); https://doi.org/10.1002/adma.201805004
- A. Sharma, Ph.D. Thesis, Corrosion Investigations in Pulping and Bleaching Media, Indian Institute of Technology Roorkee, Roorkee, India (2006).
- J. Kisel, Ph.D. Thesis, Study of Tin(II)/Tin(IV)/Anhydrous Hydro-chloric Acid based Sensitizers for Electroless Deposition, University of Windsor, Canada, National Library of Canada (1989).
- B.D. Cullity, Elements of X-Rays Diffraction., Addison-Wesley Publishing Co. Inc., Reading Mass, USA (1956).
- Powder Diffraction File, Joint Committee on Powder Diffraction Standards (JCPDS-File) (1978).
- S. Sharma and A. Kumar, J. Mol. Liq., 322, 114862 (2021); https://doi.org/10.1016/j.molliq.2020.114862
- A.I. Vogel, Quantitative Inorganic Analysis, 296, London, Longman, Green & Co. (1964).
- ASTM G1-05, Standard Practice for Preparing, Cleaning and Evaluating Corrosion Test Specimens, 3(2) (2025).
- M. Pourbaix, Atlas of Electrochemical Equilibria in Aqueous Solutions, Houston, NACE, p. 256 (1974).
- ASTM G78, Standard Guide for Crevice Corrosion Testing of Iron Base and Nickel Base Stainless alloys in Sea water and other chloride containing aqueous Environments., 3(2) (1991).
- S. Raji, A. Popoola and O. Akanji, J. Mol. Struct., 1312, 138414 (2024); https://doi.org/10.1016/j.molstruc.2024.138414
- Y. Fujimori, M. Shimizu, T. Kurashina, and S. Arai, Mater. Lett., 350, 134869 (2023); https://doi.org/10.1016/j.matlet.2023.134869
References
R. Aslam, M. Mobin, S. Zehra and J. Aslam, J. Mol. Liq., 364, 119992 (2022); https://doi.org/10.1016/j.molliq.2022.119992
B. Fotovvati, N. Namdari and A. Dehghanghadikolaei, J. Manuf. Mater. Process., 3, 28 (2019); https://doi.org/10.3390/jmmp3010028
A. Al-Azzawi and P. Baumli, Mater. Sci. Eng., 40, 26 (2015).
J. Jeevanandam, A. Barhoum, Y.S. Chan, A. Dufresne and M.K. Danquah, Beilstein J. Nanotechnol., 9, 1050 (2018); https://doi.org/10.3762/bjnano.9.98
J. Sudagar, J. Lian and W. Sha, J. Alloys Compd., 571, 183 (2013); https://doi.org/10.1016/j.jallcom.2013.03.107
D. Seifzadeh and Z. Rajabalizadeh, Surf. Coat. Technol., 218, 119 (2013); https://doi.org/10.1016/j.surfcoat.2012.12.039
Y. De Hazan, F. Knies, D. Burnat, T. Graule, Y. Yamada-Pittini, C. Aneziris and M. Kraak, J. Colloid Interface Sci., 365, 163 (2012); https://doi.org/10.1016/j.jcis.2011.09.032
M. Ram, S. Sharma, A. Ansari and A.K. Sharma, AIP Conf. Proc. 2335, 080010 (2021); https://doi.org/10.1063/5.0043715
H. Luo, M. Leitch, H. Zeng and J.-L. Luo, Mater. Today Phys., 4, 36 (2018); https://doi.org/10.1016/j.mtphys.2018.03.001
D.R. Dhakal, G. Gyawali, Y.K. Kshetri, J.-H. Choi and S.W. Lee, Surf. Coat. Technol., 381, 125135 (2020); https://doi.org/10.1016/j.surfcoat.2019.125135
A. Mukhopadhyay, T.K. Barman and P. Sahoo, Tribol. Trans., 61, 41 (2018); https://doi.org/10.1080/10402004.2016.1271929
D.H. Xia, C. Deng, D. Macdonald, S. Jamali, D. Mills, J.L. Luo, M.G. Strebl, M. Amiri, W. Jin, S. Song and W. Hu, J. Mater. Sci. Technol., 112, 151 (2022); https://doi.org/10.1016/j.jmst.2021.11.004
U.D. Bagale, S.H. Sonawane, B.A. Bhanvase, R.D. Kulkarni and P.R. Gogate, Green Process Synth., 7, 147 (2018); https://doi.org/10.1515/gps-2016-0160
T. Chen, B. Wang, Z. Qi, Z. Guo, Y. Tian and F. Meng, ACS Appl. Nano Mater., 5, 9780 (2022); https://doi.org/10.1021/acsanm.2c01993
Y. Li, N. Kawashima, J. Li, A.P. Chandra and A.R. Gerson, Adv. Colloid Interface Sci., 1, 197-198 (2013); https://doi.org/10.1016/j.cis.2013.03.004
H. Nazari, G.B. Darband and R. Arefinia, J. Mater. Sci., 58, 4292 (2023); https://doi.org/10.1007/s10853-023-08281-1
M.A. Shoeib, M.M. Kamel, S.M. Rashwan and O.M. Hafez, Surf. Interface Anal., 47, 672 (2015); https://doi.org/10.1002/sia.5764
J. Novakovic, P. Vassiliou, K.L. Samara and T. Argyropoulos, Surf. Coat. Tech., 201, 895 (2006); https://doi.org/10.1016/j.surfcoat.2006.01.005
H. Chakhtouna, H. Benzeid, N. Zari, A. Qaiss and R. Bouhfid, Environ. Sci. Pollut. Res. Int., 28, 44638 (2021); https://doi.org/10.1007/s11356-021-14996-y
Y. Nosaka, Catalysts, 12, 1557 (2022); https://doi.org/10.3390/catal12121557
M.T. Noman, M.A. Ashraf and A. Ali, Environ. Sci. Pollut. Res. Int., 26, 3262 (2019); https://doi.org/10.1007/s11356-018-3884-z
Q. Zhao, C. Liu, X. Su, S. Zhang, W. Song, S. Wang, G. Ning, J. Ye, Y. Lin and W. Gong, Appl. Surf. Sci., 274, 101 (2013); https://doi.org/10.1016/j.apsusc.2013.02.112
W. Chen, W. Gao and Y. He, Surf. Coat. Technol., 204, 2493 (2010); https://doi.org/10.1016/j.surfcoat.2010.01.032
M.S. Hasan, F. Zemajtis, M. Nosonovsky and K. Sobolev, J. Tribol., 144, 081402 (2022); https://doi.org/10.1115/1.4053777
S. Akhtar, K. Shahzad, S. Mushtaq, I. Ali, M.H. Rafe and S.M. Fazal Ul-Karim, Mater. Res. Express, 6, 105409 (2019); https://doi.org/10.1088/2053-1591/ab3b27
A. Bachvarova-Nedelcheva, R. Iordanova, A. Naydenov, A. Stoyanova, N. Georgieva, V. Nemska and T. Foteva, Catalysts, 13, 257 (2023); https://doi.org/10.3390/catal13020257
P.M. Kallel, Z. Anther, M. Masseoud, S. Vesco, M. Barletta and k. Elleuch, Ceramics Int., 47, 10 (202 1); https://doi.org/10.1016/j.ceramint.2021.02.023
G. John, M.E. Sahayaraj, J.T.W. Jappes and S.J. Leon, Period. Mineral., 92, 67 (2023); https://doi.org/10.37896/pd92.2/9224
I. Vranken, J. Baudry, M. Aubinet, M. Visser and J. Bogaert, Landsc. Ecol., 30, 51 (2015); https://doi.org/10.1007/s10980-014-0105-0
X. Zhang, X. Dai, L. Gao, D. Xu, H. Wan, Y. Wang and L. Yan, Chem. Soc. Rev., 52, 6806 (2023); https://doi.org/10.1039/D3CS00347G
J.L. Braun, C.M. Rost, M. Lim, A. Giri, D.H. Olson, G.N. Kotsonis, G. Stan, D.W. Brenner, J.-P. Maria and P.E. Hopkins, Adv. Mater., 30, 1805004 (2018); https://doi.org/10.1002/adma.201805004
A. Sharma, Ph.D. Thesis, Corrosion Investigations in Pulping and Bleaching Media, Indian Institute of Technology Roorkee, Roorkee, India (2006).
J. Kisel, Ph.D. Thesis, Study of Tin(II)/Tin(IV)/Anhydrous Hydro-chloric Acid based Sensitizers for Electroless Deposition, University of Windsor, Canada, National Library of Canada (1989).
B.D. Cullity, Elements of X-Rays Diffraction., Addison-Wesley Publishing Co. Inc., Reading Mass, USA (1956).
Powder Diffraction File, Joint Committee on Powder Diffraction Standards (JCPDS-File) (1978).
S. Sharma and A. Kumar, J. Mol. Liq., 322, 114862 (2021); https://doi.org/10.1016/j.molliq.2020.114862
A.I. Vogel, Quantitative Inorganic Analysis, 296, London, Longman, Green & Co. (1964).
ASTM G1-05, Standard Practice for Preparing, Cleaning and Evaluating Corrosion Test Specimens, 3(2) (2025).
M. Pourbaix, Atlas of Electrochemical Equilibria in Aqueous Solutions, Houston, NACE, p. 256 (1974).
ASTM G78, Standard Guide for Crevice Corrosion Testing of Iron Base and Nickel Base Stainless alloys in Sea water and other chloride containing aqueous Environments., 3(2) (1991).
S. Raji, A. Popoola and O. Akanji, J. Mol. Struct., 1312, 138414 (2024); https://doi.org/10.1016/j.molstruc.2024.138414
Y. Fujimori, M. Shimizu, T. Kurashina, and S. Arai, Mater. Lett., 350, 134869 (2023); https://doi.org/10.1016/j.matlet.2023.134869