Copyright (c) 2025 Abhijit Biswas Abhijit Biswas

This work is licensed under a Creative Commons Attribution 4.0 International License.
Biomolecule-Driven Supramolecular Gelation of Graphene Oxide: A Sustainable Route to Graphene–Metal Nanohybrid Gels with Catalytic Efficiency
Corresponding Author(s) : Abhijit Biswas
Asian Journal of Chemistry,
Vol. 37 No. 9 (2025): Vol 37 Issue 9, 2025
Abstract
A sustainable and efficient approach has been developed for the fabrication of graphene-based nanohybrid gels via supramolecular gelation of graphene oxide (GO) using uric acid as a biologically relevant cross-linker. Gelation occurred under mild aqueous conditions through non-covalent interactions between uric acid and oxygenated functional groups on GO. The resulting GO-based gel was subsequently transformed into a graphene-based nanohybrid gel embedded with noble metal nanoparticles (Au, Ag) through in situ co-reduction using ascorbic acid as an environmentally benign reducing agent. Comprehensive structural and morphological analyses confirmed the retention of the gel network post-reduction and the uniform distribution of metal nanoparticles. Among the synthesized materials, the Au nanoparticle containing graphene-based gel exhibited excellent catalytic activity in the reduction of 4-nitrophenol, demonstrating high efficiency, structural stability and recyclability. This work presents a green and scalable strategy for developing functional soft materials, offering significant potential for applications in catalysis and nanomaterial-based technologies.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- K. Geim, Science, 324, 1530 (2009); https://www.science.org/doi/10.1126/science.1158877
- R. Ruoff, Nat. Nanotechnol., 3, 10 (2008); https://doi.org/10.1038/nnano.2007.432
- B. Anegbe, I.H. Ifijen, M. Maliki, I.E. Uwidia and A.I. Aigbodion, Environ. Sci. Eur., 36, 15 (2024); https://doi.org/10.1186/s12302-023-00814-4
- D. Chen, H. Feng and J. Li, Chem. Rev., 112, 6027 (2012); https://doi.org/10.1021/cr300115g
- A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov and A.K. Geim, Rev. Mod. Phys., 81, 109 (2009); https://doi.org/10.1103/RevModPhys.81.109
- A.K. Geim and K.S. Novoselov, Nat. Mater., 6, 183 (2007); https://doi.org/10.1038/nmat1849
- D. Chen, L. Tang and J. Li, Chem. Soc. Rev., 39, 3157 (2010); https://doi.org/10.1039/b923596e
- M.D. Stoller, S. Park, Y. Zhu, J. An and R.S. Ruoff, Nano Lett., 8, 3498 (2008); https://doi.org/10.1021/nl802558y
- C. Lee, X. Wei, J.W. Kysar and J. Hone, Science, 321, 385 (2008); https://doi.org/10.1126/science.1157996
- A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao and C.N. Lau, Nano Lett., 8, 902 (2008); https://doi.org/10.1021/nl0731872
- S. Hussain, Results Chem., 6, 101029 (2023); https://doi.org/10.1016/j.rechem.2023.101029
- Y. Lei, T. Zhang, Y.‑C. Lin, T. Granzier‑Nakajima, D.A. Kowalczyk, G. Bepete, Z. Lin, D. Zhou, T. F. Schranghamer, Y. Chen, A. Dodda, A. Sebastian, G. Pourtois, T.J. Kempa, B. Schuler, M.T. Edmonds, Y. Liu, S.Y. Quek, U. Wurstbauer, S.M. Wu, N.R. Glavin, S. Das, S.P. Dash, J.M. Redwing, J.A. Robinson and M. Terrones, ACS Nanosci. Au, 2, 450 (2022); https://doi.org/10.1021/acsnanoscienceau.2c00017
- K.Y. Lee and D.J. Mooney, Chem. Rev., 101, 1869 (2001); https://doi.org/10.1021/cr000108x
- A.R. Hirst, B. Escuder, J.F. Miravet and D.K. Smith, Angew. Chem. Int. Ed., 47, 8002 (2008); https://doi.org/10.1002/anie.200800022
- X. Li, K. Yi, J. Shi, Y. Gao, H.-C. Lin and B. Xu, J. Am. Chem. Soc., 133, 17513 (2011); https://doi.org/10.1021/ja208456k
- S. Sheikh-Oleslami, B. Tao, J. D’Souza, F. Butt, H. Suntharalingam, L. Rempel and N. Amiri, Gels, 9, 591 (2023); https://doi.org/10.3390/gels9070591
- H.-L. Tan, S.-Y. Teow and J. Pushpamalar, Bioengineering, 6, 17 (2019); https://doi.org/10.3390/bioengineering6010017
- O. Gazil, D. Alonso Cerrón-Infantes, N. Virgilio and M.M. Unterlass, Nanoscale, 16, 17778 (2024); https://doi.org/10.1039/D4NR00581C
- L.M.T. Phan, T.A.T. Vo, T.X. Hoang and S. Cho, Nanomaterials, 11, 906 (2021); https://doi.org/10.3390/nano11040906
- J. Jing, X. Qian, Y. Si, G. Liu and C. Shi, Molecules, 27, 924 (2022); https://doi.org/10.3390/molecules27030924
- Y. Kim, R. Patel, C.V. Kulkarni and M. Patel, Gels, 9, 967 (2023); https://doi.org/10.3390/gels9120967
- H. Lu, S. Zhang, L. Guo and W. Li, RSC Adv., 7, 51008 (2017); https://doi.org/10.1039/C7RA09634H
- Y. Ni Chen, Z. Wang, X. Zhang, F. Gao, Z. Shao and H. Wang, J. Tissue Eng., 15, 1 (2024); https://doi.org/10.1177/20417314241282
- B. Adhikari, A. Biswas and A. Banerjee, Langmuir, 28, 1460 (2012); https://doi.org/10.1021/la203498j
- D.K. Shanmugam, Y. Madhavan, A. Manimaran, G.S. Kaliaraj, K.G. Mohanraj, N. Kandhasamy and K.K. Amirtharaj Mosas, Gels, 9, 22 (2022); https://doi.org/10.3390/gels9010022
- Y. Zhang, C.-G. Zhou, X.-H. Yan, Y. Cao, H.-L. Gao, H.-W. Luo, K.-Z. Gao, S.-C. Xue and X. Jing, J. Power Sources, 565, 232916 (2023); https://doi.org/10.1016/j.jpowsour.2023.232916
- C. Zhang, T.-J. Yuan, M.-H. Tan, X.-H. Xu, Y.-F. Huang and L.-H. Peng, Biomater. Sci., 9, 2146 (2021); https://doi.org/10.1039/D0BM01963A
- W. Hummers Jr. and R.E. Offeman, J. Am. Chem. Soc., 80, 1339 (1958); https://doi.org/10.1021/ja01539a017
- X. Zhang, Z. Sui, B. Xu, S. Yue, Y. Luo, W. Zhan and B. Liu, J. Mater. Chem., 21, 6494 (2011); https://doi.org/10.1039/c1jm10239g
- A.H. Hung, R.J. Holbrook, W. Rotz, C.J. Glasscock, N.D. Mansukhani, K.W. MacRenaris, L.M. Manus, M.C. Duch, K.T. Dam, M.C. Hersam and T.J. Meade, ACS Nano, 8, 10168 (2014); https://doi.org/10.1021/nn502986e
- Y. Xu, Q. Wu, Y. Sun, H. Bai and G. Shi, ACS Nano, 4, 7358 (2010); https://doi.org/10.1021/nn1027104
- L. Malassis, R. Dreyfus, R.J. Murphy, L.A. Hough, B. Donnio and C.B. Murray, RSC Adv., 6, 33092 (2016); https://doi.org/10.1039/C6RA00194G
- D. Singha, N. Barman and K. Sahu, J. Colloid Interface Sci., 413, 37 (2014); https://doi.org/10.1016/j.jcis.2013.09.009
- M.B. Burkholder, F.B.A. Rahman, E.H. Chandler Jr., J.R. Regalbuto, B.F. Gupton and J.M.M. Tengco, Carbon Trends, 9, 100196 (2022); https://doi.org/10.1016/j.cartre.2022.100196
- B.F. Machado and P. Serp, Catal. Sci. Technol., 2, 54 (2012); https://doi.org/10.1039/C1CY00361E
- H.-Y. Zhuo, X. Zhang, J.-X. Liang, Q. Yu, H. Xiao and J. Li, Chem. Rev., 120, 12315 (2020); https://doi.org/10.1021/acs.chemrev.0c00818
References
K. Geim, Science, 324, 1530 (2009); https://www.science.org/doi/10.1126/science.1158877
R. Ruoff, Nat. Nanotechnol., 3, 10 (2008); https://doi.org/10.1038/nnano.2007.432
B. Anegbe, I.H. Ifijen, M. Maliki, I.E. Uwidia and A.I. Aigbodion, Environ. Sci. Eur., 36, 15 (2024); https://doi.org/10.1186/s12302-023-00814-4
D. Chen, H. Feng and J. Li, Chem. Rev., 112, 6027 (2012); https://doi.org/10.1021/cr300115g
A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov and A.K. Geim, Rev. Mod. Phys., 81, 109 (2009); https://doi.org/10.1103/RevModPhys.81.109
A.K. Geim and K.S. Novoselov, Nat. Mater., 6, 183 (2007); https://doi.org/10.1038/nmat1849
D. Chen, L. Tang and J. Li, Chem. Soc. Rev., 39, 3157 (2010); https://doi.org/10.1039/b923596e
M.D. Stoller, S. Park, Y. Zhu, J. An and R.S. Ruoff, Nano Lett., 8, 3498 (2008); https://doi.org/10.1021/nl802558y
C. Lee, X. Wei, J.W. Kysar and J. Hone, Science, 321, 385 (2008); https://doi.org/10.1126/science.1157996
A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao and C.N. Lau, Nano Lett., 8, 902 (2008); https://doi.org/10.1021/nl0731872
S. Hussain, Results Chem., 6, 101029 (2023); https://doi.org/10.1016/j.rechem.2023.101029
Y. Lei, T. Zhang, Y.‑C. Lin, T. Granzier‑Nakajima, D.A. Kowalczyk, G. Bepete, Z. Lin, D. Zhou, T. F. Schranghamer, Y. Chen, A. Dodda, A. Sebastian, G. Pourtois, T.J. Kempa, B. Schuler, M.T. Edmonds, Y. Liu, S.Y. Quek, U. Wurstbauer, S.M. Wu, N.R. Glavin, S. Das, S.P. Dash, J.M. Redwing, J.A. Robinson and M. Terrones, ACS Nanosci. Au, 2, 450 (2022); https://doi.org/10.1021/acsnanoscienceau.2c00017
K.Y. Lee and D.J. Mooney, Chem. Rev., 101, 1869 (2001); https://doi.org/10.1021/cr000108x
A.R. Hirst, B. Escuder, J.F. Miravet and D.K. Smith, Angew. Chem. Int. Ed., 47, 8002 (2008); https://doi.org/10.1002/anie.200800022
X. Li, K. Yi, J. Shi, Y. Gao, H.-C. Lin and B. Xu, J. Am. Chem. Soc., 133, 17513 (2011); https://doi.org/10.1021/ja208456k
S. Sheikh-Oleslami, B. Tao, J. D’Souza, F. Butt, H. Suntharalingam, L. Rempel and N. Amiri, Gels, 9, 591 (2023); https://doi.org/10.3390/gels9070591
H.-L. Tan, S.-Y. Teow and J. Pushpamalar, Bioengineering, 6, 17 (2019); https://doi.org/10.3390/bioengineering6010017
O. Gazil, D. Alonso Cerrón-Infantes, N. Virgilio and M.M. Unterlass, Nanoscale, 16, 17778 (2024); https://doi.org/10.1039/D4NR00581C
L.M.T. Phan, T.A.T. Vo, T.X. Hoang and S. Cho, Nanomaterials, 11, 906 (2021); https://doi.org/10.3390/nano11040906
J. Jing, X. Qian, Y. Si, G. Liu and C. Shi, Molecules, 27, 924 (2022); https://doi.org/10.3390/molecules27030924
Y. Kim, R. Patel, C.V. Kulkarni and M. Patel, Gels, 9, 967 (2023); https://doi.org/10.3390/gels9120967
H. Lu, S. Zhang, L. Guo and W. Li, RSC Adv., 7, 51008 (2017); https://doi.org/10.1039/C7RA09634H
Y. Ni Chen, Z. Wang, X. Zhang, F. Gao, Z. Shao and H. Wang, J. Tissue Eng., 15, 1 (2024); https://doi.org/10.1177/20417314241282
B. Adhikari, A. Biswas and A. Banerjee, Langmuir, 28, 1460 (2012); https://doi.org/10.1021/la203498j
D.K. Shanmugam, Y. Madhavan, A. Manimaran, G.S. Kaliaraj, K.G. Mohanraj, N. Kandhasamy and K.K. Amirtharaj Mosas, Gels, 9, 22 (2022); https://doi.org/10.3390/gels9010022
Y. Zhang, C.-G. Zhou, X.-H. Yan, Y. Cao, H.-L. Gao, H.-W. Luo, K.-Z. Gao, S.-C. Xue and X. Jing, J. Power Sources, 565, 232916 (2023); https://doi.org/10.1016/j.jpowsour.2023.232916
C. Zhang, T.-J. Yuan, M.-H. Tan, X.-H. Xu, Y.-F. Huang and L.-H. Peng, Biomater. Sci., 9, 2146 (2021); https://doi.org/10.1039/D0BM01963A
W. Hummers Jr. and R.E. Offeman, J. Am. Chem. Soc., 80, 1339 (1958); https://doi.org/10.1021/ja01539a017
X. Zhang, Z. Sui, B. Xu, S. Yue, Y. Luo, W. Zhan and B. Liu, J. Mater. Chem., 21, 6494 (2011); https://doi.org/10.1039/c1jm10239g
A.H. Hung, R.J. Holbrook, W. Rotz, C.J. Glasscock, N.D. Mansukhani, K.W. MacRenaris, L.M. Manus, M.C. Duch, K.T. Dam, M.C. Hersam and T.J. Meade, ACS Nano, 8, 10168 (2014); https://doi.org/10.1021/nn502986e
Y. Xu, Q. Wu, Y. Sun, H. Bai and G. Shi, ACS Nano, 4, 7358 (2010); https://doi.org/10.1021/nn1027104
L. Malassis, R. Dreyfus, R.J. Murphy, L.A. Hough, B. Donnio and C.B. Murray, RSC Adv., 6, 33092 (2016); https://doi.org/10.1039/C6RA00194G
D. Singha, N. Barman and K. Sahu, J. Colloid Interface Sci., 413, 37 (2014); https://doi.org/10.1016/j.jcis.2013.09.009
M.B. Burkholder, F.B.A. Rahman, E.H. Chandler Jr., J.R. Regalbuto, B.F. Gupton and J.M.M. Tengco, Carbon Trends, 9, 100196 (2022); https://doi.org/10.1016/j.cartre.2022.100196
B.F. Machado and P. Serp, Catal. Sci. Technol., 2, 54 (2012); https://doi.org/10.1039/C1CY00361E
H.-Y. Zhuo, X. Zhang, J.-X. Liang, Q. Yu, H. Xiao and J. Li, Chem. Rev., 120, 12315 (2020); https://doi.org/10.1021/acs.chemrev.0c00818