Copyright (c) 2025 SOONMIN HO, ezo, OLASANMI

This work is licensed under a Creative Commons Attribution 4.0 International License.
Photovoltaic Technology: Power Conversion Efficiency of Solar Cells: A Review
Corresponding Author(s) : Soonmin Ho
Asian Journal of Chemistry,
Vol. 37 No. 9 (2025): Vol 37 Issue 9, 2025
Abstract
In recent years, there are several types of solar cells that have been reported due to their continually improving power efficiency, straightforward solution production methods, portability, lightweight nature for wearability and cost-effective material components. In this work, we have concentrated on the latest advancements in solar cells related to their properties and uses. Furthermore, various layers, such as electron transport layers and hole transport layers were described. Subsequently, the constraints and cell efficiency were reported in specific solar cells. Finally, the photovoltaic parameters of the devices, band gaps and carrier mobility were reported as well. Dye sensitized solar cells made with natural dyes offer unique benefits in energy usage. The primary factors include its efficiency, eco-friendly dyes, remarkable device performance, sustainable energy generation, and adaptable solar product incorporation. Although dye sensitized solar cells that use natural dyes as sensitizers, offer numerous advantages, they experience lower efficiency in comparison to traditional silicon based solar cells. The choice of plant components significantly influences the devices’ overall efficiency. Consequently, a thorough investigation has been conducted to examine the plant’s components that have demonstrated improved outcomes regarding device efficiency. The efficiency of organic solar cells has significantly improved in the past decade, thanks to advancements in a range of high-performance organic electron-donor and electron-acceptor materials, such as polymers, small molecules and fullerenes, used in the photo-active layer. Effective molecular design approaches for various types of organic solar cells are studied and promising research pathways are emphasized. It was noted that the efficiency of perovskite solar cells has exceeded 25% owing to high-quality films achieved through low-temperature synthesis methods, alongside advancements in suitable interface and electrode materials. In the thin film based solar cells, the research findings confirmed that power conversion efficiency, fill factor, open circuit voltage and short circuit current density is strongly dependent on experimental conditions.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- G. Nowsherwan, M. Iqbal, S. Rehman, A. Zaib, M.I. Sadiq, M.A. Dogar, M. Azhar, S.S. Maidin, S.S. Hussain, K. Morsy and J.R. Choi, Sci. Rep., 13, 10431 (2023); https://doi.org/10.1038/s41598-023-37486-2
- B. Xu, A. Eberst, P. Fall, M.A. Yaqin, V. Lauterbach, K. Bittkau, A. Lambertz, U. Rau and K. Ding, Cell Rep. Phys. Sci., 6, 102552 (2025); https://doi.org/10.1016/j.xcrp.2025.102552
- H. Zhang, X. Wang, X. Chen and Y. Zhang, Nano Energy, 136, 110715 (2025); https://doi.org/10.1016/j.nanoen.2025.110715
- M. Ali, Q. Khan, M.F.U. Din, J.K. Kasi, A.K. Kasi, A. Ali and S. Ullah, Sol. Energy, 294, 113510 (2025); https://doi.org/10.1016/j.solener.2025.113510
- P. Chamola, P. Mittal and B. Kumar, ECS J. Solid State Sci. Technol., (2024); https://doi.org/10.1149/2162-8777/ad32d8
- P. Jain, R. S. Rajput, S. Kumar, A. Sharma, A. Jain, B. J. Bora, P. Sharma, R. Kumar, M. S. Shahid, A. A. Rajhi, M. Alsubih, M. A. Shah, and A. Bhowmik, ACS Omega, 9, 12403 (2024); https://doi.org/10.1021/acsomega.3c07994
- G.A. Nowsherwan, M.A. Iqbal, S.U. Rehman, A. Zaib, M.I. Sadiq, M.A. Dogar, M. Azhar, S.S. Maidin, S.S. Hussain, K. Morsy and J.R. Choi, Sci. Rep., 13, 10431 (2023); https://doi.org/10.1038/s41598-023-37486-2
- N.A. Pirdaus, N. Ahmad, F. Muhammad-Sukki and W.A.A.Q.I. Wan-Mohtar, Electrochim. Acta, 527, 146267 (2025); https://doi.org/10.1016/j.electacta.2025.146267
- A. Tropea, D. Spadaro, I. Citro, M. Lanza, S. Trocino, R.L. Tella, D. Giuffrida, C.U. Mussagy, L. Mondello and G. Calogero, J. Photochem. Photobiol. Chem., 461, 116174 (2025); https://doi.org/10.1016/j.jphotochem.2024.116174
- R. Paneru, X. Kang, S. Budhathoki, Z. Chen, Q. Yang, S.T. Tjeng, Q. Dai, W. Wang, J. Tang and M. Fan, J. Environ. Sci., 154, 590 (2025); https://doi.org/10.1016/j.jes.2024.10.001
- A.O. Adeloye, S. Koudjina, V. Kumar, K.C. Tapala, J.D. Gbenou and P. Chetti, Dyes Pigments, 235, 112626 (2025); https://doi.org/10.1016/j.dyepig.2024.112626
- Y. Zhang, H. Tao, H. Wang, J. Hao, Y. Liu and Y. Yuan, Opt. Mater., 158, 116446 (2025); https://doi.org/10.1016/j.optmat.2024.116446
- F.N. Almutairi, A. Ghitas, H. Alanazi and M.A. Shahat, Synth. Met., 311, 117841 (2025); https://doi.org/10.1016/j.synthmet.2025.117841
- H. Jaafar, H. Jaafar, Z.A. Ahmad and M.A.M. Asri, Mater. Today Commun., 45, 112240 (2025); https://doi.org/10.1016/j.mtcomm.2025.112240
- A. Kumar, P. Rodrigues, S.H. Majid, A.J. Khalaf, P. Kanjariya, A. Singh, S. Goyal and K.P. Vinay, Mater. Sci. Semicond. Process., 185, 109009 (2025); https://doi.org/10.1016/j.mssp.2024.109009
- E. Akman, Y. Altintas, M. Gulen, M. Yilmaz, E. Mutlugun and S. Sonmezoglu, Renew. Energy, 145, 2192 (2020); https://doi.org/10.1016/j.renene.2019.07.150
- A.M.M. Hasan and M.A.B.H. Susan, Heliyon, 11, e42272 (2025); https://doi.org/10.1016/j.heliyon.2025.e42272
- J.A. Salam, A.M. Anand, A. Raj and R. Jayakrishnan, Sol. Energy Mater. Sol. Cells, 282, 113374 (2025); https://doi.org/10.1016/j.solmat.2024.113374
- M.Z. Najihah, M.F. Aizamddin, F.I. Saaid and T. Winie, Curr. Appl. Phys., 72, 28 (2025); https://doi.org/10.1016/j.cap.2025.01.017
- S. Kashyap, U. Ansari, D. Poddar, A. Singh, A. Sarkar and D. Jain, Inorg. Chem. Commun., 172, 113570 (2025); https://doi.org/10.1016/j.inoche.2024.113570
- R. Ramanathan, M. Zinigrad, D. Kasinathan and R.K. Poobalan, ACS Appl. Energy Mater., 5, 11506 (2022); https://doi.org/10.1021/acsaem.2c01981
- B. Tan, E. Toman, Y. Li and Y. Wu, J. Am. Chem. Soc., 129, 4162 (2007); https://doi.org/10.1021/ja070804f
- K. Deevi and V.S.R. Imma Reddy, Mater. Lett., 283, 128848 (2021); https://doi.org/10.1016/j.matlet.2020.128848
- F. Saadat, A. Alizadeh, M. Roudgar-Amoli and Z. Shariatinia, Ceram. Int., 48, 21812 (2022); https://doi.org/10.1016/j.ceramint.2022.04.165
- P. Dharani, M. Praveen, T. Archana and R. Kanimozhi, J. Electron. Mater., 54, 2857 (2025); https://doi.org/10.1007/s11664-025-11810-0
- Y.-F. Wang, M.-W. Liu, Q.-Q. Miao, Y.-R. Deng, R.-P. Liu, J. Zhang and L. Zhang, Adv. Powder Technol., 35, 104372 (2024); https://doi.org/10.1016/j.apt.2024.104372
- S. Gholamrezaei, M. Salavati Niasari, M. Dadkhah and B. Sarkhosh, J. Mater. Sci. Mater. Electron., 27, 118 (2016); https://doi.org/10.1007/s10854-015-3726-4
- K. Aravinthkumar, E. Praveen, A.J.R. Mary and C. Raja Mohan, Inorg. Chem. Commun., 140, 109451 (2022); https://doi.org/10.1016/j.inoche.2022.109451
- S. Qiong, Y. Hong and T. Zang, J. Electrochem. Soc., 165, H3069 (2018); https://doi.org/10.1149/2.0101804jes
- E. Guo and L. Yin, J. Mater. Chem. A Mater. Energy Sustain., 3, 13390 (2015); https://doi.org/10.1039/C5TA02556G
- R. Tang and L. Yin, J. Mater. Chem. A Mater. Energy Sustain., 3, 17417 (2015); https://doi.org/10.1039/C5TA03810C
- S.G. Chen, S. Chappel, Y. Diamant and A. Zaban, Chem. Mater., 13, 4629 (2001); https://doi.org/10.1021/cm010343b
- S. Ueno and S. Fujihara, Electrochim. Acta, 56, 2906 (2011); https://doi.org/10.1016/j.electacta.2010.12.084
- S. Suresh, G.E. Unni, C. Ni, R.S. Sreedharan, M. Satyanarayana, R.R. Krishnan, M. Shanmugam and V.P.M. Pillai, Appl. Surf. Sci., 419, 720 (2017); https://doi.org/10.1016/j.apsusc.2017.05.081
- H.-N. Kim and J.H. Moon, ACS Appl. Mater. Interfaces, 4, 5821 (2012); https://doi.org/10.1021/am3014554
- T.-Y. Cho, K.-W. Ko, S.-G. Yoon, S.S. Sekhon, M.G. Kang, Y.-S. Hong and C.-H. Han, Curr. Appl. Phys., 13, 1391 (2013); https://doi.org/10.1016/j.cap.2013.04.012
- R. Panetta, A. Latini, I. Pettiti and C. Cavallo, Mater. Chem. Phys., 202, 289 (2017); https://doi.org/10.1016/j.matchemphys.2017.09.030
- C. Yen, Y. Chang and C. Chen, J. Electrochem. Soc., (2018); https://doi.org/10.1149/2.0091807jes
- Z. Duan, X. Liang, Y. Feng, H. Ma, B. Liang, Y. Wang, S. Luo, S. Wang, R.E.I. Schropp, Y. Mai and Z. Li, Adv. Mater., 34, 2202969 (2022); https://doi.org/10.1002/adma.202202969
- M.H. Ali, M.D. Haque, M.F. Hossain and A.Z.M.T. Islam, RSC Adv., 15, 7069 (2025); https://doi.org/10.1039/D5RA00417A
- K. Qiu, D. Qiu, L. Cai, S. Li, W. Wu, Z. Liang and H. Shen, Mater. Lett., 198, 23 (2017); https://doi.org/10.1016/j.matlet.2017.03.171
- S.S. Yesilkaya, U. Ulutas and H.M.A. Alqader, Mater. Lett., 288, 129347 (2021); https://doi.org/10.1016/j.matlet.2021.129347
- R. Hall and D. Meakin, Thin Solid Films, 63, 203 (1979); https://doi.org/10.1016/0040-6090(79)90127-5
- H. Jia, Y. Hu, Y. Tang and L. Zhang, Electrochem. Commun., 8, 1381 (2006); https://doi.org/10.1016/j.elecom.2006.06.025
- W.F. Mohammed, O. Daoud and M. Al-Tikriti, Circuits and Systems, 3, 230 (2012); https://doi.org/10.4236/cs.2012.33032
- S. Keitoku and H. Ezumi, Sol. Energy Mater. Sol. Cells, 35, 299 (1994); https://doi.org/10.1016/0927-0248(94)90154-6
- M. Tsuji, T. Aramoto, H. Ohyama, T. Hibino and K. Omura, Jpn. J. Appl. Phys., 39(7R), 3902 (2000); https://doi.org/10.1143/JJAP.39.3902
- H. Mohamed, Sol. Energy, 108, 360 (2014); https://doi.org/10.1016/j.solener.2014.07.017
- D.H. Yeon, S.M. Lee, Y.H. Jo, J. Moon and Y.S. Cho, J. Mater. Chem. A Mater. Energy Sustain., 2, 20112 (2014); https://doi.org/10.1039/C4TA03433C
- G. Jia, B. Liu, K. Wang, C. Wang, P. Yang, J. Liu, W. Zhang, R. Li, S. Zhang and J. Du, Nanomaterials, 9, 409 (2019); https://doi.org/10.3390/nano9030409
- T. Mise and T. Nakada, J. Appl. Phys., 110, 014504 (2011); https://doi.org/10.1063/1.3605522
- C. Dong, R. Liu and W. Meng, Mater. Lett., 381, 137766 (2025); https://doi.org/10.1016/j.matlet.2024.137766
- W. Septina, Gunawan, Shobih, N.M. Nursam, J.P. Lopes and N. Gaillard, J. Electroanal. Chem., 940, 117484 (2023); https://doi.org/10.1016/j.jelechem.2023.117484
- K. Siemer, J. Klaer, I. Luck, J. Bruns, R. Klenk and D. Bräunig, Sol. Energy Mater. Sol. Cells, 67, 159 (2001); https://doi.org/10.1016/S0927-0248(00)00276-2
- R. Scheer, T. Walter, H. Schock, M.L. Fearheiley and H.J. Lewerenz, Appl. Phys. Lett., 63, 3294 (1993); https://doi.org/10.1063/1.110786
- S. Nakamura and A. Yamamoto, Sol. Energy Mater. Sol. Cells, 75, 81 (2003); https://doi.org/10.1016/S0927-0248(02)00097-1
- S.J. Ahn, Y.J. Choi, K. Kim, Y.-J. Eo, A. Cho, J. Gwak, J.H. Yun, K. Shin, S.K. Ahn and K. Yoon, ChemSusChem, 6, 1282 (2013); https://doi.org/10.1002/cssc.201200894
- S.J. Ahn, T.H. Son, A. Cho, J. Gwak, J.H. Yun, K. Shin, S.K. Ahn, S.H. Park and K.H. Yoon, ChemSusChem, 5, 1773 (2012); https://doi.org/10.1002/cssc.201200096
- Z. Zhi, S. Wang, L. Huang, J. Li and X. Xiao, Mater. Sci. Semicond. Process., 144, 106592 (2022); https://doi.org/10.1016/j.mssp.2022.106592
- C. Yan, J. Huang, K. Sun, S. Johnston, Y. Zhang, H. Sun, A. Pu, M. He, F. Liu, K. Eder, L. Yang, J.M. Cairney, N.J. Ekins-Daukes, Z. Hameiri, J.A. Stride, S. Chen, M.A. Green and X. Hao, Nat. Energy, 3, 764 (2018); https://doi.org/10.1038/s41560-018-0206-0
- S. Tajima, M. Umehara, M. Hasegawa, T. Mise and T. Itoh, Prog. Photovolt. Res. Appl., 25, 14 (2017); https://doi.org/10.1002/pip.2837
- B. Shin, O. Gunawan, Y. Zhu, N.A. Bojarczuk, S.J. Chey and S. Guha, Prog. Photovolt. Res. Appl., 21, 72 (2013); https://doi.org/10.1002/pip.1174
- T. Mise, S. Tajima, T. Fukano, K. Higuchi and H. Katagiri, J. Vac. Sci. Technol. A, 33, 021206 (2015); https://doi.org/10.1116/1.4906787
- J.-O. Jeon, K.D. Lee, L. Seul Oh, S.-W. Seo, D.-K. Lee, H. Kim, J. Jeong, M.J. Ko, B.S. Kim, H.J. Son and J.Y. Kim, ChemSusChem, 7, 1073 (2014); https://doi.org/10.1002/cssc.201301347
- J. Cha, S. Jin and D. Jung, ChemSusChem, 8, 2407 (2015); https://doi.org/10.1002/cssc.201403464
- V.A. Akhavan, T.B. Harvey, C.J. Stolle, D.P. Ostrowski, M.S. Glaz, B.W. Goodfellow, M.G. Panthani, D.K. Reid, D.A. Vanden Bout and B.A. Korgel, ChemSusChem, 6, 481 (2013); https://doi.org/10.1002/cssc.201200677
- C. Liu, C. Chen, L. Chen, Y.-T. Yen, W.-C. Kuo, Y.-K. Liao, J.-Y. Juang, H.-C. Kuo, C.-H. Lai, L.-J. Chen and Y.-L. Chueh, Nano Lett., 11, 4443 (2011); https://doi.org/10.1021/nl202673k
- Y. Tokita, S. Chaisitsak, A. Yamada and M. Konagai, Sol. Energy Mater. Sol. Cells, 75, 9 (2003); https://doi.org/10.1016/S0927-0248(02)00105-8
- K.S. Gour, V. Karade, P. Babar, J. Park, D.M. Lee, V.N. Singh and J.H. Kim, Sol. RRL, 5, 2000815 (2021); https://doi.org/10.1002/solr.202000815
- V.C. Karade, S.S. Sutar, S.W. Shin, M.P. Suryawanshi, J.S. Jang, K.S. Gour, R.K. Kamat, J.H. Yun, T.D. Dongale and J.H. Kim, Adv. Funct. Mater., 33, 2303459 (2023); https://doi.org/10.1002/adfm.202303459
- K. Yin, X. Xu, M. Wang, J. Zhou, B. Duan, J. Shi, D. Li, H. Wu, Y. Luo and Q. Meng, J. Mater. Chem. A Mater. Energy Sustain., 10, 779 (2022); https://doi.org/10.1039/D1TA09024K
- P.D. Antunez, D.M. Bishop, Y. Luo and R. Haight, Nat. Energy, 2, 884 (2017); https://doi.org/10.1038/s41560-017-0028-5
- U. Khan, Y. Zhinong, A.A. Khan, A. Zulfiqar and Q.U. Khan, Sol. Energy, 189, 421 (2019); https://doi.org/10.1016/j.solener.2019.06.061
- A.-A. Kanoun, M.B. Kanoun, A.E. Merad and S. Goumri-Said, Sol. Energy, 182, 237 (2019); https://doi.org/10.1016/j.solener.2019.02.041
- M.A. Afroz, R.K. Gupta, R. Garai, M. Hossain, S.P. Tripathi and P.K. Iyer, Org. Electron., 74, 172 (2019); https://doi.org/10.1016/j.orgel.2019.07.007
- Y. Wang, T. Mahmoudi, W.-Y. Rho and Y.-B. Hahn, Nano Energy, 64, 103964 (2019); https://doi.org/10.1016/j.nanoen.2019.103964
- A. Ahmed, M. Alzahrani, K. Shanks, S. Sundaram and T.K. Mallick, Mater. Lett., 277, 128332 (2020); https://doi.org/10.1016/j.matlet.2020.128332
- I. Hussain, A.R. Chowdhury, J. Jaksik, G. Grissom, A. Touhami, E.E. Ibrahim, M. Schauer, O. Okoli and M.J. Uddin, Appl. Surf. Sci., 478, 327 (2019); https://doi.org/10.1016/j.apsusc.2019.01.233
- Q. Han, O. Yuta, L. Wang, C. Zhang and T. Ma, Mater. Today Commun., 33, 104653 (2022); https://doi.org/10.1016/j.mtcomm.2022.104653
- F. Han, L. Wang, W. Wang, J. Zou, H. Tang and Q.-Q. Chu, J. Power Sources, 635, 236557 (2025); https://doi.org/10.1016/j.jpowsour.2025.236557
- N. Jiang, Z. Zheng, C. Qin, R. Liang, Z. Li, Z. Ye and L. Zhu, Ceram. Int., 49, 9502 (2023); https://doi.org/10.1016/j.ceramint.2022.11.117
- Z. Shi, S. Wu, S. Lin, J. Sun, H. Huang, D. Kong, Y. Gao and C. Zhou, Appl. Surf. Sci., 609, 155250 (2023); https://doi.org/10.1016/j.apsusc.2022.155250
- W. Qiu, Y. Wu, Y. Wang, Z. Yang, R. Yang, C. Zhang, Y. Hao and Y. Hao, Chem. Eng. J., 468, 143656 (2023); https://doi.org/10.1016/j.cej.2023.143656
- Z. Zhang, D. Li, S. Wang, Y. Geng and H. Liu, Chem. Eng. J., 464, 142615 (2023); https://doi.org/10.1016/j.cej.2023.142615
- S. Valizadeh, A. Shokri, S.M. Lawal and N. Fough, Results Phys., 73, 108280 (2025); https://doi.org/10.1016/j.rinp.2025.108280
- A. Peter Amalathas, A. Rajavinayagam, L. Landová, M. Dopita and J. Holovský, J. Alloys Compd., 1027, 180533 (2025); https://doi.org/10.1016/j.jallcom.2025.180533
- D. Wang, C. Song, L. Cheng, K. Chen, F. Meng, G. Wang and W. Xiang, Chem. Eng. J., 512, 162516 (2025); https://doi.org/10.1016/j.cej.2025.162516
- B. Shen, Q. Zhou, Q. Sun, B. Kang and S.R.P. Silva, Chem. Eng. J., 513, 163004 (2025); https://doi.org/10.1016/j.cej.2025.163004
- J. Yang, Y. Gan, M. Han, S. Wang, P. Li, Y. Zhang, G. Li and Y. Song, J. Energy Chem., 108, 550 (2025); https://doi.org/10.1016/j.jechem.2025.04.046
- F. Alshaeer, M.A. Mohammed, M. Zorah, N. Alharbi, H.A.M.A. Mahmoud, A.M.E. Ahmed, B.A. Mohammed, G. Abdulkareem-Alsultan and M.F. Nassar, J. Alloys Compd., 1026, 180428 (2025); https://doi.org/10.1016/j.jallcom.2025.180428
- M. Raj, S. Batra, A. Aggarwal, A. Kushwaha and N. Goel, Renew. Energy, 250, 123360 (2025); https://doi.org/10.1016/j.renene.2025.123360
- Y. Yuan, J. Chen, Y. Wang, J. He, G. Niu, K. Yang, J. Wang and Y. Li, Nano Energy, 140, 111027 (2025); https://doi.org/10.1016/j.nanoen.2025.111027
- L. Zhang, W. Wang, Y. Wei, H. Wang, J. Ye, P. Lin, P. Wang, X. Wu, X. Yu, Z. Ni, L. Xu and C. Cui, Mater. Today Commun., 46, 112548 (2025); https://doi.org/10.1016/j.mtcomm.2025.112548
- R.R. Lekshmy, E. Raza, Z. Ahmad and Jolly Bhadra, Results Opt., 21, 100823 (2025); https://doi.org/10.1016/j.rio.2025.1008232025
- H.C. Bennett, R. Tamilarasi, R. Magesh, R. Nandhakumar, N. Ganesan, R. Jeba Beula, A. Abiram and S.K.P. Velu, J. Phys. Chem. Solids, 206, 112835 (2025); https://doi.org/10.1016/j.jpcs.2025.112835
- V. Singh, Curr. Appl. Phys., 17, 1450 (2017); https://doi.org/10.1016/j.cap.2017.08.010
- A. Zeynali, T.S. Ghiasi, G. Riazi and R. Ajeian, Org. Electron., 51, 341 (2017); https://doi.org/10.1016/j.orgel.2017.09.032
- U. Neupane, B. Bahrami, M. Biesecker, M.F. Baroughi and Q. Qiao, Nano Energy, 35, 128 (2017); https://doi.org/10.1016/j.nanoen.2017.03.041
- A. Farooq, M.U. Khan, M.U. Alvi, A.U. Hassan and K.A. Alrashidi, J. Indian Chem. Soc., 101, 101418 (2024); https://doi.org/10.1016/j.jics.2024.101418
- Y. Cai, X. Zhu, S. Ma, T. Ye, S. Sun, D. Chen, B. Li, L. Zheng and D. Yun, Opt. Mater., 142, 113983 (2023); https://doi.org/10.1016/j.optmat.2023.113983
- M. Arshad, S. Arshad, H.U. haq, F.A. Janjhi, M.S. Khan, M.A. Tariq, T. Hassan and M.Y. Mehboob, J. Solid State Chem., 323, 124018 (2023); https://doi.org/10.1016/j.jssc.2023.124018
- J. Yu, L. Hao, K. Zhang, J. Zheng, J. Zhang, Y. Xu, M. Dong, J. Xie, H. Li, X. Luo and F. Huang, Chem. Eng. J., 500, 156887 (2024); https://doi.org/10.1016/j.cej.2024.156887
- Z. Zhu, C. Zhu, Y. Tu, T. Shao, Y. Wang, W. Liu, Y. Liu, Y. Zang, Q. Wei and W. Yan, Cell Rep. Phys. Sci., 5, 102316 (2024); https://doi.org/10.1016/j.xcrp.2024.102316
- Y. Zhang, P. Tong, S. Chen, Y. Liu, F. Dou, J. Guo, Y. Fu and X. Zhang, Mater. Today Phys., 46, 101495 (2024); https://doi.org/10.1016/j.mtphys.2024.101495
- V.P. Jain, A.S. Mathur, G. Jaiswar and B.P. Singh, Next Research, 1, 100066 (2024); https://doi.org/10.1016/j.nexres.2024.100066
- S. Yurtdaş, M. Karaman and C. Tozlu, Opt. Mater., 139, 113742 (2023); https://doi.org/10.1016/j.optmat.2023.113742
- H. Liu, Z. Chen, R. Peng, Y. Qiu, J. Shi, J. Zhu, Y. Meng, Z. Tang, J. Zhang, F. Chen and Z. Ge, Chem. Eng. J., 474, 145807 (2023); https://doi.org/10.1016/j.cej.2023.145807
- A. Kaushik, S. Bhandary, G.D. Sharma and J. Sankar, Mater. Adv., 4, 6358 (2023); https://doi.org/10.1039/D3MA00610G
- J. Wang, H. Chen, C. Li, Y. Lin, Y. Yang, Z. Ma and Y. Lu, Chem. Eng. J., 477, 147091 (2023); https://doi.org/10.1016/j.cej.2023.147091
- J. Zhong, H. Xu, J. Zhao, F. Gao, J. Zhou and Y. Long, Org. Electron., 121, 106864 (2023); https://doi.org/10.1016/j.orgel.2023.106864
- Z. Suo, Z. Xiao, S. Li, J. Liu, Y. Xin, L. Meng, H. Liang, B. Kan, Z. Yao, C. Li, X. Wan and Y. Chen, Nano Energy, 118, 109032 (2023); https://doi.org/10.1016/j.nanoen.2023.109032
References
G. Nowsherwan, M. Iqbal, S. Rehman, A. Zaib, M.I. Sadiq, M.A. Dogar, M. Azhar, S.S. Maidin, S.S. Hussain, K. Morsy and J.R. Choi, Sci. Rep., 13, 10431 (2023); https://doi.org/10.1038/s41598-023-37486-2
B. Xu, A. Eberst, P. Fall, M.A. Yaqin, V. Lauterbach, K. Bittkau, A. Lambertz, U. Rau and K. Ding, Cell Rep. Phys. Sci., 6, 102552 (2025); https://doi.org/10.1016/j.xcrp.2025.102552
H. Zhang, X. Wang, X. Chen and Y. Zhang, Nano Energy, 136, 110715 (2025); https://doi.org/10.1016/j.nanoen.2025.110715
M. Ali, Q. Khan, M.F.U. Din, J.K. Kasi, A.K. Kasi, A. Ali and S. Ullah, Sol. Energy, 294, 113510 (2025); https://doi.org/10.1016/j.solener.2025.113510
P. Chamola, P. Mittal and B. Kumar, ECS J. Solid State Sci. Technol., (2024); https://doi.org/10.1149/2162-8777/ad32d8
P. Jain, R. S. Rajput, S. Kumar, A. Sharma, A. Jain, B. J. Bora, P. Sharma, R. Kumar, M. S. Shahid, A. A. Rajhi, M. Alsubih, M. A. Shah, and A. Bhowmik, ACS Omega, 9, 12403 (2024); https://doi.org/10.1021/acsomega.3c07994
G.A. Nowsherwan, M.A. Iqbal, S.U. Rehman, A. Zaib, M.I. Sadiq, M.A. Dogar, M. Azhar, S.S. Maidin, S.S. Hussain, K. Morsy and J.R. Choi, Sci. Rep., 13, 10431 (2023); https://doi.org/10.1038/s41598-023-37486-2
N.A. Pirdaus, N. Ahmad, F. Muhammad-Sukki and W.A.A.Q.I. Wan-Mohtar, Electrochim. Acta, 527, 146267 (2025); https://doi.org/10.1016/j.electacta.2025.146267
A. Tropea, D. Spadaro, I. Citro, M. Lanza, S. Trocino, R.L. Tella, D. Giuffrida, C.U. Mussagy, L. Mondello and G. Calogero, J. Photochem. Photobiol. Chem., 461, 116174 (2025); https://doi.org/10.1016/j.jphotochem.2024.116174
R. Paneru, X. Kang, S. Budhathoki, Z. Chen, Q. Yang, S.T. Tjeng, Q. Dai, W. Wang, J. Tang and M. Fan, J. Environ. Sci., 154, 590 (2025); https://doi.org/10.1016/j.jes.2024.10.001
A.O. Adeloye, S. Koudjina, V. Kumar, K.C. Tapala, J.D. Gbenou and P. Chetti, Dyes Pigments, 235, 112626 (2025); https://doi.org/10.1016/j.dyepig.2024.112626
Y. Zhang, H. Tao, H. Wang, J. Hao, Y. Liu and Y. Yuan, Opt. Mater., 158, 116446 (2025); https://doi.org/10.1016/j.optmat.2024.116446
F.N. Almutairi, A. Ghitas, H. Alanazi and M.A. Shahat, Synth. Met., 311, 117841 (2025); https://doi.org/10.1016/j.synthmet.2025.117841
H. Jaafar, H. Jaafar, Z.A. Ahmad and M.A.M. Asri, Mater. Today Commun., 45, 112240 (2025); https://doi.org/10.1016/j.mtcomm.2025.112240
A. Kumar, P. Rodrigues, S.H. Majid, A.J. Khalaf, P. Kanjariya, A. Singh, S. Goyal and K.P. Vinay, Mater. Sci. Semicond. Process., 185, 109009 (2025); https://doi.org/10.1016/j.mssp.2024.109009
E. Akman, Y. Altintas, M. Gulen, M. Yilmaz, E. Mutlugun and S. Sonmezoglu, Renew. Energy, 145, 2192 (2020); https://doi.org/10.1016/j.renene.2019.07.150
A.M.M. Hasan and M.A.B.H. Susan, Heliyon, 11, e42272 (2025); https://doi.org/10.1016/j.heliyon.2025.e42272
J.A. Salam, A.M. Anand, A. Raj and R. Jayakrishnan, Sol. Energy Mater. Sol. Cells, 282, 113374 (2025); https://doi.org/10.1016/j.solmat.2024.113374
M.Z. Najihah, M.F. Aizamddin, F.I. Saaid and T. Winie, Curr. Appl. Phys., 72, 28 (2025); https://doi.org/10.1016/j.cap.2025.01.017
S. Kashyap, U. Ansari, D. Poddar, A. Singh, A. Sarkar and D. Jain, Inorg. Chem. Commun., 172, 113570 (2025); https://doi.org/10.1016/j.inoche.2024.113570
R. Ramanathan, M. Zinigrad, D. Kasinathan and R.K. Poobalan, ACS Appl. Energy Mater., 5, 11506 (2022); https://doi.org/10.1021/acsaem.2c01981
B. Tan, E. Toman, Y. Li and Y. Wu, J. Am. Chem. Soc., 129, 4162 (2007); https://doi.org/10.1021/ja070804f
K. Deevi and V.S.R. Imma Reddy, Mater. Lett., 283, 128848 (2021); https://doi.org/10.1016/j.matlet.2020.128848
F. Saadat, A. Alizadeh, M. Roudgar-Amoli and Z. Shariatinia, Ceram. Int., 48, 21812 (2022); https://doi.org/10.1016/j.ceramint.2022.04.165
P. Dharani, M. Praveen, T. Archana and R. Kanimozhi, J. Electron. Mater., 54, 2857 (2025); https://doi.org/10.1007/s11664-025-11810-0
Y.-F. Wang, M.-W. Liu, Q.-Q. Miao, Y.-R. Deng, R.-P. Liu, J. Zhang and L. Zhang, Adv. Powder Technol., 35, 104372 (2024); https://doi.org/10.1016/j.apt.2024.104372
S. Gholamrezaei, M. Salavati Niasari, M. Dadkhah and B. Sarkhosh, J. Mater. Sci. Mater. Electron., 27, 118 (2016); https://doi.org/10.1007/s10854-015-3726-4
K. Aravinthkumar, E. Praveen, A.J.R. Mary and C. Raja Mohan, Inorg. Chem. Commun., 140, 109451 (2022); https://doi.org/10.1016/j.inoche.2022.109451
S. Qiong, Y. Hong and T. Zang, J. Electrochem. Soc., 165, H3069 (2018); https://doi.org/10.1149/2.0101804jes
E. Guo and L. Yin, J. Mater. Chem. A Mater. Energy Sustain., 3, 13390 (2015); https://doi.org/10.1039/C5TA02556G
R. Tang and L. Yin, J. Mater. Chem. A Mater. Energy Sustain., 3, 17417 (2015); https://doi.org/10.1039/C5TA03810C
S.G. Chen, S. Chappel, Y. Diamant and A. Zaban, Chem. Mater., 13, 4629 (2001); https://doi.org/10.1021/cm010343b
S. Ueno and S. Fujihara, Electrochim. Acta, 56, 2906 (2011); https://doi.org/10.1016/j.electacta.2010.12.084
S. Suresh, G.E. Unni, C. Ni, R.S. Sreedharan, M. Satyanarayana, R.R. Krishnan, M. Shanmugam and V.P.M. Pillai, Appl. Surf. Sci., 419, 720 (2017); https://doi.org/10.1016/j.apsusc.2017.05.081
H.-N. Kim and J.H. Moon, ACS Appl. Mater. Interfaces, 4, 5821 (2012); https://doi.org/10.1021/am3014554
T.-Y. Cho, K.-W. Ko, S.-G. Yoon, S.S. Sekhon, M.G. Kang, Y.-S. Hong and C.-H. Han, Curr. Appl. Phys., 13, 1391 (2013); https://doi.org/10.1016/j.cap.2013.04.012
R. Panetta, A. Latini, I. Pettiti and C. Cavallo, Mater. Chem. Phys., 202, 289 (2017); https://doi.org/10.1016/j.matchemphys.2017.09.030
C. Yen, Y. Chang and C. Chen, J. Electrochem. Soc., (2018); https://doi.org/10.1149/2.0091807jes
Z. Duan, X. Liang, Y. Feng, H. Ma, B. Liang, Y. Wang, S. Luo, S. Wang, R.E.I. Schropp, Y. Mai and Z. Li, Adv. Mater., 34, 2202969 (2022); https://doi.org/10.1002/adma.202202969
M.H. Ali, M.D. Haque, M.F. Hossain and A.Z.M.T. Islam, RSC Adv., 15, 7069 (2025); https://doi.org/10.1039/D5RA00417A
K. Qiu, D. Qiu, L. Cai, S. Li, W. Wu, Z. Liang and H. Shen, Mater. Lett., 198, 23 (2017); https://doi.org/10.1016/j.matlet.2017.03.171
S.S. Yesilkaya, U. Ulutas and H.M.A. Alqader, Mater. Lett., 288, 129347 (2021); https://doi.org/10.1016/j.matlet.2021.129347
R. Hall and D. Meakin, Thin Solid Films, 63, 203 (1979); https://doi.org/10.1016/0040-6090(79)90127-5
H. Jia, Y. Hu, Y. Tang and L. Zhang, Electrochem. Commun., 8, 1381 (2006); https://doi.org/10.1016/j.elecom.2006.06.025
W.F. Mohammed, O. Daoud and M. Al-Tikriti, Circuits and Systems, 3, 230 (2012); https://doi.org/10.4236/cs.2012.33032
S. Keitoku and H. Ezumi, Sol. Energy Mater. Sol. Cells, 35, 299 (1994); https://doi.org/10.1016/0927-0248(94)90154-6
M. Tsuji, T. Aramoto, H. Ohyama, T. Hibino and K. Omura, Jpn. J. Appl. Phys., 39(7R), 3902 (2000); https://doi.org/10.1143/JJAP.39.3902
H. Mohamed, Sol. Energy, 108, 360 (2014); https://doi.org/10.1016/j.solener.2014.07.017
D.H. Yeon, S.M. Lee, Y.H. Jo, J. Moon and Y.S. Cho, J. Mater. Chem. A Mater. Energy Sustain., 2, 20112 (2014); https://doi.org/10.1039/C4TA03433C
G. Jia, B. Liu, K. Wang, C. Wang, P. Yang, J. Liu, W. Zhang, R. Li, S. Zhang and J. Du, Nanomaterials, 9, 409 (2019); https://doi.org/10.3390/nano9030409
T. Mise and T. Nakada, J. Appl. Phys., 110, 014504 (2011); https://doi.org/10.1063/1.3605522
C. Dong, R. Liu and W. Meng, Mater. Lett., 381, 137766 (2025); https://doi.org/10.1016/j.matlet.2024.137766
W. Septina, Gunawan, Shobih, N.M. Nursam, J.P. Lopes and N. Gaillard, J. Electroanal. Chem., 940, 117484 (2023); https://doi.org/10.1016/j.jelechem.2023.117484
K. Siemer, J. Klaer, I. Luck, J. Bruns, R. Klenk and D. Bräunig, Sol. Energy Mater. Sol. Cells, 67, 159 (2001); https://doi.org/10.1016/S0927-0248(00)00276-2
R. Scheer, T. Walter, H. Schock, M.L. Fearheiley and H.J. Lewerenz, Appl. Phys. Lett., 63, 3294 (1993); https://doi.org/10.1063/1.110786
S. Nakamura and A. Yamamoto, Sol. Energy Mater. Sol. Cells, 75, 81 (2003); https://doi.org/10.1016/S0927-0248(02)00097-1
S.J. Ahn, Y.J. Choi, K. Kim, Y.-J. Eo, A. Cho, J. Gwak, J.H. Yun, K. Shin, S.K. Ahn and K. Yoon, ChemSusChem, 6, 1282 (2013); https://doi.org/10.1002/cssc.201200894
S.J. Ahn, T.H. Son, A. Cho, J. Gwak, J.H. Yun, K. Shin, S.K. Ahn, S.H. Park and K.H. Yoon, ChemSusChem, 5, 1773 (2012); https://doi.org/10.1002/cssc.201200096
Z. Zhi, S. Wang, L. Huang, J. Li and X. Xiao, Mater. Sci. Semicond. Process., 144, 106592 (2022); https://doi.org/10.1016/j.mssp.2022.106592
C. Yan, J. Huang, K. Sun, S. Johnston, Y. Zhang, H. Sun, A. Pu, M. He, F. Liu, K. Eder, L. Yang, J.M. Cairney, N.J. Ekins-Daukes, Z. Hameiri, J.A. Stride, S. Chen, M.A. Green and X. Hao, Nat. Energy, 3, 764 (2018); https://doi.org/10.1038/s41560-018-0206-0
S. Tajima, M. Umehara, M. Hasegawa, T. Mise and T. Itoh, Prog. Photovolt. Res. Appl., 25, 14 (2017); https://doi.org/10.1002/pip.2837
B. Shin, O. Gunawan, Y. Zhu, N.A. Bojarczuk, S.J. Chey and S. Guha, Prog. Photovolt. Res. Appl., 21, 72 (2013); https://doi.org/10.1002/pip.1174
T. Mise, S. Tajima, T. Fukano, K. Higuchi and H. Katagiri, J. Vac. Sci. Technol. A, 33, 021206 (2015); https://doi.org/10.1116/1.4906787
J.-O. Jeon, K.D. Lee, L. Seul Oh, S.-W. Seo, D.-K. Lee, H. Kim, J. Jeong, M.J. Ko, B.S. Kim, H.J. Son and J.Y. Kim, ChemSusChem, 7, 1073 (2014); https://doi.org/10.1002/cssc.201301347
J. Cha, S. Jin and D. Jung, ChemSusChem, 8, 2407 (2015); https://doi.org/10.1002/cssc.201403464
V.A. Akhavan, T.B. Harvey, C.J. Stolle, D.P. Ostrowski, M.S. Glaz, B.W. Goodfellow, M.G. Panthani, D.K. Reid, D.A. Vanden Bout and B.A. Korgel, ChemSusChem, 6, 481 (2013); https://doi.org/10.1002/cssc.201200677
C. Liu, C. Chen, L. Chen, Y.-T. Yen, W.-C. Kuo, Y.-K. Liao, J.-Y. Juang, H.-C. Kuo, C.-H. Lai, L.-J. Chen and Y.-L. Chueh, Nano Lett., 11, 4443 (2011); https://doi.org/10.1021/nl202673k
Y. Tokita, S. Chaisitsak, A. Yamada and M. Konagai, Sol. Energy Mater. Sol. Cells, 75, 9 (2003); https://doi.org/10.1016/S0927-0248(02)00105-8
K.S. Gour, V. Karade, P. Babar, J. Park, D.M. Lee, V.N. Singh and J.H. Kim, Sol. RRL, 5, 2000815 (2021); https://doi.org/10.1002/solr.202000815
V.C. Karade, S.S. Sutar, S.W. Shin, M.P. Suryawanshi, J.S. Jang, K.S. Gour, R.K. Kamat, J.H. Yun, T.D. Dongale and J.H. Kim, Adv. Funct. Mater., 33, 2303459 (2023); https://doi.org/10.1002/adfm.202303459
K. Yin, X. Xu, M. Wang, J. Zhou, B. Duan, J. Shi, D. Li, H. Wu, Y. Luo and Q. Meng, J. Mater. Chem. A Mater. Energy Sustain., 10, 779 (2022); https://doi.org/10.1039/D1TA09024K
P.D. Antunez, D.M. Bishop, Y. Luo and R. Haight, Nat. Energy, 2, 884 (2017); https://doi.org/10.1038/s41560-017-0028-5
U. Khan, Y. Zhinong, A.A. Khan, A. Zulfiqar and Q.U. Khan, Sol. Energy, 189, 421 (2019); https://doi.org/10.1016/j.solener.2019.06.061
A.-A. Kanoun, M.B. Kanoun, A.E. Merad and S. Goumri-Said, Sol. Energy, 182, 237 (2019); https://doi.org/10.1016/j.solener.2019.02.041
M.A. Afroz, R.K. Gupta, R. Garai, M. Hossain, S.P. Tripathi and P.K. Iyer, Org. Electron., 74, 172 (2019); https://doi.org/10.1016/j.orgel.2019.07.007
Y. Wang, T. Mahmoudi, W.-Y. Rho and Y.-B. Hahn, Nano Energy, 64, 103964 (2019); https://doi.org/10.1016/j.nanoen.2019.103964
A. Ahmed, M. Alzahrani, K. Shanks, S. Sundaram and T.K. Mallick, Mater. Lett., 277, 128332 (2020); https://doi.org/10.1016/j.matlet.2020.128332
I. Hussain, A.R. Chowdhury, J. Jaksik, G. Grissom, A. Touhami, E.E. Ibrahim, M. Schauer, O. Okoli and M.J. Uddin, Appl. Surf. Sci., 478, 327 (2019); https://doi.org/10.1016/j.apsusc.2019.01.233
Q. Han, O. Yuta, L. Wang, C. Zhang and T. Ma, Mater. Today Commun., 33, 104653 (2022); https://doi.org/10.1016/j.mtcomm.2022.104653
F. Han, L. Wang, W. Wang, J. Zou, H. Tang and Q.-Q. Chu, J. Power Sources, 635, 236557 (2025); https://doi.org/10.1016/j.jpowsour.2025.236557
N. Jiang, Z. Zheng, C. Qin, R. Liang, Z. Li, Z. Ye and L. Zhu, Ceram. Int., 49, 9502 (2023); https://doi.org/10.1016/j.ceramint.2022.11.117
Z. Shi, S. Wu, S. Lin, J. Sun, H. Huang, D. Kong, Y. Gao and C. Zhou, Appl. Surf. Sci., 609, 155250 (2023); https://doi.org/10.1016/j.apsusc.2022.155250
W. Qiu, Y. Wu, Y. Wang, Z. Yang, R. Yang, C. Zhang, Y. Hao and Y. Hao, Chem. Eng. J., 468, 143656 (2023); https://doi.org/10.1016/j.cej.2023.143656
Z. Zhang, D. Li, S. Wang, Y. Geng and H. Liu, Chem. Eng. J., 464, 142615 (2023); https://doi.org/10.1016/j.cej.2023.142615
S. Valizadeh, A. Shokri, S.M. Lawal and N. Fough, Results Phys., 73, 108280 (2025); https://doi.org/10.1016/j.rinp.2025.108280
A. Peter Amalathas, A. Rajavinayagam, L. Landová, M. Dopita and J. Holovský, J. Alloys Compd., 1027, 180533 (2025); https://doi.org/10.1016/j.jallcom.2025.180533
D. Wang, C. Song, L. Cheng, K. Chen, F. Meng, G. Wang and W. Xiang, Chem. Eng. J., 512, 162516 (2025); https://doi.org/10.1016/j.cej.2025.162516
B. Shen, Q. Zhou, Q. Sun, B. Kang and S.R.P. Silva, Chem. Eng. J., 513, 163004 (2025); https://doi.org/10.1016/j.cej.2025.163004
J. Yang, Y. Gan, M. Han, S. Wang, P. Li, Y. Zhang, G. Li and Y. Song, J. Energy Chem., 108, 550 (2025); https://doi.org/10.1016/j.jechem.2025.04.046
F. Alshaeer, M.A. Mohammed, M. Zorah, N. Alharbi, H.A.M.A. Mahmoud, A.M.E. Ahmed, B.A. Mohammed, G. Abdulkareem-Alsultan and M.F. Nassar, J. Alloys Compd., 1026, 180428 (2025); https://doi.org/10.1016/j.jallcom.2025.180428
M. Raj, S. Batra, A. Aggarwal, A. Kushwaha and N. Goel, Renew. Energy, 250, 123360 (2025); https://doi.org/10.1016/j.renene.2025.123360
Y. Yuan, J. Chen, Y. Wang, J. He, G. Niu, K. Yang, J. Wang and Y. Li, Nano Energy, 140, 111027 (2025); https://doi.org/10.1016/j.nanoen.2025.111027
L. Zhang, W. Wang, Y. Wei, H. Wang, J. Ye, P. Lin, P. Wang, X. Wu, X. Yu, Z. Ni, L. Xu and C. Cui, Mater. Today Commun., 46, 112548 (2025); https://doi.org/10.1016/j.mtcomm.2025.112548
R.R. Lekshmy, E. Raza, Z. Ahmad and Jolly Bhadra, Results Opt., 21, 100823 (2025); https://doi.org/10.1016/j.rio.2025.1008232025
H.C. Bennett, R. Tamilarasi, R. Magesh, R. Nandhakumar, N. Ganesan, R. Jeba Beula, A. Abiram and S.K.P. Velu, J. Phys. Chem. Solids, 206, 112835 (2025); https://doi.org/10.1016/j.jpcs.2025.112835
V. Singh, Curr. Appl. Phys., 17, 1450 (2017); https://doi.org/10.1016/j.cap.2017.08.010
A. Zeynali, T.S. Ghiasi, G. Riazi and R. Ajeian, Org. Electron., 51, 341 (2017); https://doi.org/10.1016/j.orgel.2017.09.032
U. Neupane, B. Bahrami, M. Biesecker, M.F. Baroughi and Q. Qiao, Nano Energy, 35, 128 (2017); https://doi.org/10.1016/j.nanoen.2017.03.041
A. Farooq, M.U. Khan, M.U. Alvi, A.U. Hassan and K.A. Alrashidi, J. Indian Chem. Soc., 101, 101418 (2024); https://doi.org/10.1016/j.jics.2024.101418
Y. Cai, X. Zhu, S. Ma, T. Ye, S. Sun, D. Chen, B. Li, L. Zheng and D. Yun, Opt. Mater., 142, 113983 (2023); https://doi.org/10.1016/j.optmat.2023.113983
M. Arshad, S. Arshad, H.U. haq, F.A. Janjhi, M.S. Khan, M.A. Tariq, T. Hassan and M.Y. Mehboob, J. Solid State Chem., 323, 124018 (2023); https://doi.org/10.1016/j.jssc.2023.124018
J. Yu, L. Hao, K. Zhang, J. Zheng, J. Zhang, Y. Xu, M. Dong, J. Xie, H. Li, X. Luo and F. Huang, Chem. Eng. J., 500, 156887 (2024); https://doi.org/10.1016/j.cej.2024.156887
Z. Zhu, C. Zhu, Y. Tu, T. Shao, Y. Wang, W. Liu, Y. Liu, Y. Zang, Q. Wei and W. Yan, Cell Rep. Phys. Sci., 5, 102316 (2024); https://doi.org/10.1016/j.xcrp.2024.102316
Y. Zhang, P. Tong, S. Chen, Y. Liu, F. Dou, J. Guo, Y. Fu and X. Zhang, Mater. Today Phys., 46, 101495 (2024); https://doi.org/10.1016/j.mtphys.2024.101495
V.P. Jain, A.S. Mathur, G. Jaiswar and B.P. Singh, Next Research, 1, 100066 (2024); https://doi.org/10.1016/j.nexres.2024.100066
S. Yurtdaş, M. Karaman and C. Tozlu, Opt. Mater., 139, 113742 (2023); https://doi.org/10.1016/j.optmat.2023.113742
H. Liu, Z. Chen, R. Peng, Y. Qiu, J. Shi, J. Zhu, Y. Meng, Z. Tang, J. Zhang, F. Chen and Z. Ge, Chem. Eng. J., 474, 145807 (2023); https://doi.org/10.1016/j.cej.2023.145807
A. Kaushik, S. Bhandary, G.D. Sharma and J. Sankar, Mater. Adv., 4, 6358 (2023); https://doi.org/10.1039/D3MA00610G
J. Wang, H. Chen, C. Li, Y. Lin, Y. Yang, Z. Ma and Y. Lu, Chem. Eng. J., 477, 147091 (2023); https://doi.org/10.1016/j.cej.2023.147091
J. Zhong, H. Xu, J. Zhao, F. Gao, J. Zhou and Y. Long, Org. Electron., 121, 106864 (2023); https://doi.org/10.1016/j.orgel.2023.106864
Z. Suo, Z. Xiao, S. Li, J. Liu, Y. Xin, L. Meng, H. Liang, B. Kan, Z. Yao, C. Li, X. Wan and Y. Chen, Nano Energy, 118, 109032 (2023); https://doi.org/10.1016/j.nanoen.2023.109032