Copyright (c) 2025 Naruti Longkumer, Kikoleho Richa, Rituparna Karmaker, Basanta Singha, Benzir Ahmed, Penlisola Longkumer, Partha Pratim Gogoi, Nichan Boruah, Rituraj Barman, Bipul Bezbaruah, Upasana Bora Sinha Upasana

This work is licensed under a Creative Commons Attribution 4.0 International License.
Integrated Approach: Synthesis, in vitro Evaluation and Computational Analysis of Bromoanilines as Potential Antioxidants
Corresponding Author(s) : Upasana Bora Sinha
Asian Journal of Chemistry,
Vol. 37 No. 9 (2025): Vol 37 Issue 9, 2025
Abstract
Bromoanilines are pivotal in medicinal chemistry, serving as crucial intermediates for bioactive compounds like antioxidants and therapeutic agents. Despite their potential, their intrinsic properties remain underexplored. This study innovatively synthesized bioactive bromoanilines using a greener protocol with water as the solvent and cetyltrimethylammonium tribromide (CTMATB) as the brominating agent, chosen for its sustainable characteristics. The synthesized compounds were evaluated for their antioxidant activity using DPPH, where 4-bromo-2-nitroaniline (3a) demonstrated exceptional activity with an IC50 of 1.73 mg/mL, surpassing Trolox as a positive control. FRAP assay further validated the superior antioxidant behaviour of compound 3a. In-depth analysis via density functional theory (DFT) highlighted antioxidant mechanisms, favouring the sequential proton loss electron transfer (SPLET) pathway. Molecular docking with myeloperoxidase (MPO) with PDB ID: 1DNU underscored 3a's strong affinity, with a Moldock score of -54.98 kcal/mol. Further analyses through visual molecular dynamics (VMD), non-covalent interaction (NCI) and electron localization function (ELF), confirmed its stable interactions and electron distribution. Physico-chemical assessments underscored favourable drug-like profile and safety compound 3a. This comprehensive approach reveals 4-bromo-2-nitroaniline (3a) as a promising antioxidant with potential therapeutic applications. However, further studies including in vivo exploration and clinical trials are crucial to validate its efficacy and safety as an antioxidant.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M. Antolovich, P.D. Prenzler, E. Patsalides, S. McDonald and K. Robards, Analyst, 127, 183 (2002); https://doi.org/10.1039/b009171p
- E. Menteşe, F. Yılmaz, N. Baltaş, O. Bekircan and B. Kahveci, J. Enzyme Inhib. Med. Chem., 30, 435 (2015); https://doi.org/10.3109/14756366.2014.943203
- Y. Dong, T.K. Venkatachalam, R.K. Narla, V.N. Trieu, E.A. Sudbeck and F.M. Uckun, Bioorg. Med. Chem. Lett., 10, 87 (2000); https://doi.org/10.1016/S0960-894X(99)00581-8
- N. Mihailović, V. Marković, I.Z. Matić, N.S. Stanisavljević, Ž.S. Jovanović, S. Trifunović and L. Joksović, RSC Adv., 7, 8550 (2017); https://doi.org/10.1039/C6RA28787E
- E. Bendary, R.R. Francis, H.M.G. Ali, M.I. Sarwat and S. El Hady, Ann. Agric. Sci., 58, 173 (2013); https://doi.org/10.1016/j.aoas.2013.07.002
- S.K. Madhusudan and A.K. Misra, Carbohydr. Res., 340, 497 (2005); https://doi.org/10.1016/j.carres.2004.12.002
- E. Tayama, R. Sato, K. Takedachi, H. Iwamoto and E. Hasegawa, Tetrahedron, 68, 4710 (2012); https://doi.org/10.1016/j.tet.2012.04.015
- E.D. Matveeva, T.A. Podrugina and N.S. Zefirov, Mendeleev Commun., 8, 21 (1998); https://doi.org/10.1070/MC1998v008n01ABEH000729
- J.D. Pelletier and D. Poirier, Tetrahedron Lett., 35, 1051 (1994); https://doi.org/10.1016/S0040-4039(00)79963-1
- Q. Zhou, Y. Bao and G. Yan, Adv. Synth. Catal., 364, 1371 (2022); https://doi.org/10.1002/adsc.202200023
- A. Ruíz-Baltazar, Int. Res. J. Pure Appl. Chem., 4, 263 (2014); https://doi.org/10.9734/IRJPAC/2014/7595
- M.B. Floyd, M.T. Du, P.F. Fabio, L.A. Jacob and B.D. Johnson, J. Org. Chem., 50, 5022 (1985); https://doi.org/10.1021/jo00225a004
- S. Ghammamy, K. Mehrani, H. Afrand, Z. Javanshir, G. Rezaeibéhbahani, A. Moghimi and Z.S. Aghbolagh, J. Chil. Chem. Soc., 54, (2009); https://doi.org/10.4067/S0717-97072009000400038
- A.K. Singh, V. Singh, S. Rahmani, B. Singh and B. Singh, J. Mol. Catal. Chem., 197, 91 (2003); https://doi.org/10.1016/S1381-1169(02)00590-3
- K. Murai, T. Matsushita, A. Nakamura, S. Fukushima, M. Shimura and H. Fujioka, Angew. Chem. Int. Ed., 49, 9174 (2010); https://doi.org/10.1002/anie.201005409
- C.H. Cook and E.K. Kang, Arch. Pharm. Res., 4, 137 (1981); https://doi.org/10.1007/BF02855758
- C.H. Cook and Y.S. Chung, Arch. Pharm. Res., 4, 133 (1981); https://doi.org/10.1007/BF02855757
- G. Gopalakrishnan, V. Kasinath, N.D. Pradeep Singh, V.P. Santhana Krishnan, K.A. Solomon and S.S. Rajan, Molecules, 7, 412 (2002); https://doi.org/10.3390/70500412
- M. Murai, R. Hatano, S. Kitabata and K. Ohe, Chem. Commun., 47, 2375 (2011); https://doi.org/10.1039/C0CC04385K
- D. Urankar, I. Rutar, B. Modec and D. Dolenc, Eur. J. Org. Chem., 2005, 2349 (2005); https://doi.org/10.1002/ejoc.200400829
- J.J. Xia, X.L. Wu and G.W. Wang, ARKIVOC, 2008, 22 (2008); https://doi.org/10.3998/ark.5550190.0009.g03
- A.J. Borah and P. Phukan, Tetrahedron Lett., 53, 3035 (2012); https://doi.org/10.1016/j.tetlet.2012.04.011
- D.K. Yadav, A.K. Yadav, V.P. Srivastava, G. Watal and L.D.S. Yadav, Tetrahedron Lett., 53, 2890 (2012); https://doi.org/10.1016/j.tetlet.2012.03.129
- K. Richa, R. Karmaker, N. Longkumer, V. Das, P.J. Bhuyan, M. Pal and U.B. Sinha, Anticancer. Agents Med. Chem., 19, 2211 (2020); https://doi.org/10.2174/1871520619666190930122137
- S.C. Jeyaseelan, A.M.F. Benial and K. Kaviyarasu, J. Mol. Recognit., 34, (2020); https://doi.org/10.1002/jmr.2873
- M. Chaudhary, N. Kumar, A. Baldi, R. Chandra, M.A. Babu and J. Madan, J. Biomol. Struct. Dyn., 38, 1335 (2020); https://doi.org/10.1080/07391102.2019.1604266
- É.A. Enyedy, G.M. Bognár, N.V. Nagy, T. Jakusch, T. Kiss and D. Gambino, Polyhedron, 67, 242 (2014); https://doi.org/10.1016/j.poly.2013.08.053
- A.S. Berezin, J. Mol. Struct., 1336, 142110 (2025); https://doi.org/10.1016/j.molstruc.2025.142110
- K.S. Patel, J.C. Patel, H.R. Dholariya and K.D. Patel, Spectrochim. Acta A Mol. Biomol. Spectrosc., 96, 468 (2012); https://doi.org/10.1016/j.saa.2012.05.057
- B. Jadou, A. Hameed and A. Al-Rubaie, Egypt. J. Chem., 0, 0 (2020); https://doi.org/10.21608/ejchem.2020.43195.2872
- D.G. Ivanchenko, N.I. Romanenko and V.I. Kornienko, Chem. Nat. Compd., 54, 532 (2018); https://doi.org/10.1007/s10600-018-2397-9
- N. Longkumer, K. Richa, R. Karmaker, V. Kuotsu, A. Supong, L. Jamir, P. Bharali and U. Bora Sinha, Acta Chim. Slov., 66, 276 (2019); https://doi.org/10.17344/acsi.2018.4580
- K. Iwasa, D.U. Lee, S.I. Kang and W. Wiegrebe, J. Nat. Prod., 61, 1150 (1998); https://doi.org/10.1021/np980044+
- H. Vural and M. Kara, Optik, 145, 479 (2017); https://doi.org/10.1016/j.ijleo.2017.08.032
- V.K. Bhovi, Y.D. Bodke, S. Biradar, B.E.K. Swamy and S. Umesh, Phosphorus Sulfur Silicon Relat. Elem., 185, 110 (2009); https://doi.org/10.1080/10426500902717317
- G.S. Fasiuddin, F.L.A. Khan, S. Sakthivel, S. Muthu and A. Irfan, J. Mol. Struct., 1261, 132815 (2022); https://doi.org/10.1016/j.molstruc.2022.132815
- R.V. Kusurkar, R.H. Rayani, D.R. Parmar, M.N. Bhoi, V.H. Zunjar and J.Y. Soni, Results Chem., 4, 100357 (2022); https://doi.org/10.1016/j.rechem.2022.100357
- W. Zhao, X. Feng, S. Ban, W. Lin and Q. Li, Bioorg. Med. Chem. Lett., 20, 4132 (2010); https://doi.org/10.1016/j.bmcl.2010.05.068
- H. Wang, K. Wen, N. Nurahmat, Y. Shao, H. Zhang, C. Wei, Y. Li, Y. Shen and Z. Sun, Beilstein J. Org. Chem., 8, 744 (2012); https://doi.org/10.3762/bjoc.8.84
- S.P. Borikar, T. Daniel and V. Paul, Tetrahedron Lett., 50, 1007 (2009); https://doi.org/10.1016/j.tetlet.2008.12.053
- B. Das, K. Venkateswarlu, A. Majhi, V. Siddaiah and K.R. Reddy, J. Mol. Catal. Chem., 267, 30 (2007); https://doi.org/10.1016/j.molcata.2006.11.002
- P.V. Ghorpade, D.A. Pethsangave, S. Some and G.S. Shankarling, J. Org. Chem., 83, 7388 (2018); https://doi.org/10.1021/acs.joc.8b00188
- H. Tajik, I. Mohammadpoor-Baltork, P. Hassan-Zadeh and H.R. Rashtabadi, Russ. J. Org. Chem., 43, 1282 (2007); https://doi.org/10.1134/S1070428007090047
- Y.K. Al-Majedy, D.L. Al-Duhaidahawi, K.F. Al-Azawi, A.A. Al-Amiery, A.A.H. Kadhum and A.B. Mohamad, Molecules, 21, 135 (2016); https://doi.org/10.3390/molecules21020135
- D. Lahiri, S. Dash, R. Dutta and M. Nag, J. Biosci., 44, 52 (2019); https://doi.org/10.1007/s12038-019-9868-4
- K. Ecevit, A.A. Barros, J.M. Silva and R.L. Reis, Future Pharmacol., 2, 460 (2022); https://doi.org/10.3390/futurepharmacol2040030
- M. Sathiya Deepika, R. Thangam, P. Sakthidhasan, S. Arun, S. Sivasubramanian and R. Thirumurugan, Food Control, 90, 282 (2018); https://doi.org/10.1016/j.foodcont.2018.02.044
- W. Lee and D.G. Lee, Biochem. Biophys. Res. Commun., 489, 228 (2017); https://doi.org/10.1016/j.bbrc.2017.05.138
- S.C. Yang, C.H. Tseng, P.W. Wang, P.L. Lu, Y.H. Weng, F.L. Yen and J.Y. Fang, Front. Microbiol., 8, 1103 (2017); https://doi.org/10.3389/fmicb.2017.01103
- X. Ren, P. An, X. Zhai, S. Wang and Q. Kong, Lebensm. Wiss. Technol., 101, 100 (2019); https://doi.org/10.1016/j.lwt.2018.11.038
- D.K. Joung, S.H. Mun, S.H. Choi, O.H. Kang, S.B. Kim, Y.S. Lee, T. Zhou, R. Kong, J.G. Choi, D.W. Shin, Y.C. Kim, D.S. Lee and D.Y. Kwon, Exp. Ther. Med., 12, 1579 (2016); https://doi.org/10.3892/etm.2016.3486
- D. Singh, R. Mendonsa, M. Koli, M. Subramanian and S.K. Nayak, Toxicol. Appl. Pharmacol., 367, 23 (2019); https://doi.org/10.1016/j.taap.2019.01.025
- F. Bakkali, S. Averbeck, D. Averbeck and M. Idaomar, Food Chem. Toxicol., 46, 446 (2008); https://doi.org/10.1016/j.fct.2007.09.106
- P.M.S. Sahoo, S. Behera, R. Behura, A. Acharya, D. Biswal, S.K. Suna, R. Sahoo, R.C. Soren and B.R. Jali, Biointerface Res. Appl. Chem., 12, 3247 (2021); https://doi.org/10.33263/BRIAC123.32473258
- O. Inanami, T. Yamamori, H. Shionoya and M. Kuwabara, eds.: H. Sawada, H. Yokosawa and C.C. Lambert, Antioxidant Activity of Quinone-derivatives from Freeze-dried Powder of the Ascidians. In: The Biology of Ascidians. Springer, Tokyo, pp. 457–462 (2001).
- S. Debnath, A. Agarwal, N.R. Kumar and A. Bedi, Future Pharmacol., 2, 595 (2022); https://doi.org/10.3390/futurepharmacol2040036
- A.A. Al-Amiery, Res. Chem. Intermed., 38, 745 (2012); https://doi.org/10.1007/s11164-011-0414-8
- A.A. Almehizia, H.A. Abuelizz, H.A.A. Taie, A. ElHassane, M. Marzouk and R. Al-Salahi, Saudi Pharm. J., 27, 133 (2019); https://doi.org/10.1016/j.jsps.2018.09.006
- H. Cao, W.X. Cheng, C. Li, X.L. Pan, X.G. Xie and T.H. Li, J. Mol. Struct. THEOCHEM, 719, 177 (2005); https://doi.org/10.1016/j.theochem.2005.01.029
- M. Reis, B. Lobato, J. Lameira, A.S. Santos and C.N. Alves, Eur. J. Med. Chem., 42, 440 (2007); https://doi.org/10.1016/j.ejmech.2006.11.008
- N.F. Santos-Sánchez, R. Salas-Coronado, C. Villanueva-Cañongo and B. Hernández-Carlos, in eds.: E. Shalaby, Antioxidant Compounds and Their Antioxidant Mechanism, IntechOpen eBooks (2019).
- N. Zhang, Y. Wu, M. Qiao, W. Yuan, X. Li, X. Wang, J. Sheng and C. Zi, Struct. Chem., 33, 795 (2022); https://doi.org/10.1007/s11224-022-01895-2
- K. Richa, R. Karmaker, T. Ao, N. Longkumer, B. Singha and U.B. Sinha, Chem. Phys. Lett., 753, 137611 (2020); https://doi.org/10.1016/j.cplett.2020.137611
- B. Singha, B. Arora, R. Karmaker, K. Richa, N. Longkumer, M. Abid, H.T. Abdulhameed and U.B. Sinha, ChemistrySelect, 9, e202304761 (2024); https://doi.org/10.1002/slct.202304761
- M. Gupta, R. Sharma and A. Kumar, Comput. Biol. Chem., 76, 210 (2018); https://doi.org/10.1016/j.compbiolchem.2018.06.005
- B. Chami, N.J.J. Martin, J.M. Dennis and P.K. Witting, Arch. Biochem. Biophys., 645, 61 (2018); https://doi.org/10.1016/j.abb.2018.03.012
- Y. Aratani, Arch. Biochem. Biophys., 640, 47 (2018); https://doi.org/10.1016/j.abb.2018.01.004
- P.T. Goud, D. Bai and H.M. Abu-Soud, Int. J. Biol. Sci., 17, 62 (2021); https://doi.org/10.7150/ijbs.51811
- B.S. Chethan and N.K. Lokanath, J. Mol. Struct., 1251, 131936 (2022); https://doi.org/10.1016/j.molstruc.2021.131936
- N.S. Venkataramanan and A. Suvitha, J. Mol. Graph. Model., 81, 50 (2018); https://doi.org/10.1016/j.jmgm.2018.02.010
- W. Humphrey, A. Dalke and K. Schulten, J. Mol. Graph., 14, 33 (1996); https://doi.org/10.1016/0263-7855(96)00018-5
- T. Lu and F. Chen, J. Comput. Chem., 33, 580 (2012); https://doi.org/10.1002/jcc.22885
- J. Yana, N. Chiangraeng, P. Nimmanpipug and V.S. Lee, J. Mol. Graph. Model., 107, 107946 (2021); https://doi.org/10.1016/j.jmgm.2021.107946
- M. Oyaizu, Eiyogaku Zasshi, 44, 307 (1986); https://doi.org/10.5264/eiyogakuzashi.44.307
- M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery, Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, O. Yazyev, R.E. Stratmann, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, P. Salvador, G.A. Voth, J.J. Dannenberg, S. Dapprich, A.D. Daniels, O. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski and D.J. Fox, Gaussian 09, Revision A.02, Gaussian, Inc., Wallingford CT (2009).
- R.D. Vargas-Sánchez, A.M. Mendoza-Wilson, R.R. Balandrán-Quintana, G.R. Torrescano-Urrutia and A. Sánchez-Escalante, Comput. Theor. Chem., 1058, 21 (2015); https://doi.org/10.1016/j.comptc.2015.01.014
- R. Karmaker, N.B. Kuotsu, A. Ganguly, N. Guchhait and U.B. Sinha, Chem. Phys. Lett., 711, 118 (2018); https://doi.org/10.1016/j.cplett.2018.09.022
- P. Škorňa, J. Rimarčík and E. Klein, Acta Chim. Slov., 7, 31 (2014); https://doi.org/10.2478/acs-2014-0006
- G. Wang, Y. Xue, L. An, Y. Zheng, Y. Dou, L. Zhang and Y. Liu, Food Chem., 171, 89 (2015); https://doi.org/10.1016/j.foodchem.2014.08.106
- S.J. Blanksby and G.B. Ellison, Acc. Chem. Res., 36, 255 (2003); https://doi.org/10.1021/ar020230d
- G. Mazzone, N. Malaj, A. Galano, N. Russo and M. Toscano, RSC Adv., 5, 565 (2015); https://doi.org/10.1039/C4RA11733F
- A. Galano, M. Francisco-Márquez and J.R. Alvarez-Idaboy, Phys. Chem. Chem. Phys., 13, 11199 (2011); https://doi.org/10.1039/c1cp20722a
- G. Bitencourt-Ferreira and W.F. De Azevedo Jr., Methods Mol. Biol., 2053, 149 (2019); https://doi.org/10.1007/978-1-4939-9752-7_10
- D. Pathak, N. Chadha and O. Silakari, J. Mol. Graph. Model., 70, 85 (2016); https://doi.org/10.1016/j.jmgm.2016.09.013
- H.V. Sanghani, S.H. Ganatra and R. Pande, J. Comput. Sci. Syst. Biol., 05, (2012); https://doi.org/10.4172/jcsb.1000085
- B. Silvi and A. Savin, Nature, 371, 683 (1994); https://doi.org/10.1038/371683a0
- G. Xiong, Z. Wu, J. Yi, L. Fu, Z. Yang, C. Hsieh, M. Yin, X. Zeng, C. Wu, A. Lu, X. Chen, T. Hou and D. Cao, Nucleic Acids Res., 49(W1), W5 (2021); https://doi.org/10.1093/nar/gkab255
- V. Polshettiwar, R.S. Varma, Green Chem., 12, 743 (2010); https://doi.org/10.1039/b921171c
- K. Hartonen, M.L. Riekkola, Elsevier eBooks, 19–55 (2017).
- B.S. Furniss, A.J. Hannaford, P.W.G. Smith and A.R. Tatchell, Vogel’s Text Book of Practical Organic Chemistry, Longman: New York, edn. 5 (1989).
- S. Santosh Kumar, K.I. Priyadarsini and K.B. Sainis, Redox Rep., 7, 35 (2002); https://doi.org/10.1179/135100002125000163
- M. Singhal, A. Paul, H.P. Singh, S.K. Dubey and K. Gaur, J. Chem. Pharm. Res., 3, 639 (2011).
- R.J. Ouellette and J.D. Rawn, Principles of Organic Chemistry, Elsevier eBooks, edn. 2, pp. 51–86 (2018).
- C. Zheng and O. Rubel, J. Phys. Chem. C, 121, 11977 (2017); https://doi.org/10.1021/acs.jpcc.7b00333
- B. Ahmed, P. Barukial and B. Bezbaruah, J. Indian Chem. Soc., 100, 101027 (2023); https://doi.org/10.1016/j.jics.2023.101027
- A. Daina and V. Zoete, ChemMedChem, 11, 1117 (2016); https://doi.org/10.1002/cmdc.201600182
- R.C. Braga, V.M. Alves, M.F.B. Silva, E. Muratov, D. Fourches, L.M. Lião, A. Tropsha and C.H. Andrade, Mol. Inform., 34, 698 (2015); https://doi.org/10.1002/minf.201500040
References
M. Antolovich, P.D. Prenzler, E. Patsalides, S. McDonald and K. Robards, Analyst, 127, 183 (2002); https://doi.org/10.1039/b009171p
E. Menteşe, F. Yılmaz, N. Baltaş, O. Bekircan and B. Kahveci, J. Enzyme Inhib. Med. Chem., 30, 435 (2015); https://doi.org/10.3109/14756366.2014.943203
Y. Dong, T.K. Venkatachalam, R.K. Narla, V.N. Trieu, E.A. Sudbeck and F.M. Uckun, Bioorg. Med. Chem. Lett., 10, 87 (2000); https://doi.org/10.1016/S0960-894X(99)00581-8
N. Mihailović, V. Marković, I.Z. Matić, N.S. Stanisavljević, Ž.S. Jovanović, S. Trifunović and L. Joksović, RSC Adv., 7, 8550 (2017); https://doi.org/10.1039/C6RA28787E
E. Bendary, R.R. Francis, H.M.G. Ali, M.I. Sarwat and S. El Hady, Ann. Agric. Sci., 58, 173 (2013); https://doi.org/10.1016/j.aoas.2013.07.002
S.K. Madhusudan and A.K. Misra, Carbohydr. Res., 340, 497 (2005); https://doi.org/10.1016/j.carres.2004.12.002
E. Tayama, R. Sato, K. Takedachi, H. Iwamoto and E. Hasegawa, Tetrahedron, 68, 4710 (2012); https://doi.org/10.1016/j.tet.2012.04.015
E.D. Matveeva, T.A. Podrugina and N.S. Zefirov, Mendeleev Commun., 8, 21 (1998); https://doi.org/10.1070/MC1998v008n01ABEH000729
J.D. Pelletier and D. Poirier, Tetrahedron Lett., 35, 1051 (1994); https://doi.org/10.1016/S0040-4039(00)79963-1
Q. Zhou, Y. Bao and G. Yan, Adv. Synth. Catal., 364, 1371 (2022); https://doi.org/10.1002/adsc.202200023
A. Ruíz-Baltazar, Int. Res. J. Pure Appl. Chem., 4, 263 (2014); https://doi.org/10.9734/IRJPAC/2014/7595
M.B. Floyd, M.T. Du, P.F. Fabio, L.A. Jacob and B.D. Johnson, J. Org. Chem., 50, 5022 (1985); https://doi.org/10.1021/jo00225a004
S. Ghammamy, K. Mehrani, H. Afrand, Z. Javanshir, G. Rezaeibéhbahani, A. Moghimi and Z.S. Aghbolagh, J. Chil. Chem. Soc., 54, (2009); https://doi.org/10.4067/S0717-97072009000400038
A.K. Singh, V. Singh, S. Rahmani, B. Singh and B. Singh, J. Mol. Catal. Chem., 197, 91 (2003); https://doi.org/10.1016/S1381-1169(02)00590-3
K. Murai, T. Matsushita, A. Nakamura, S. Fukushima, M. Shimura and H. Fujioka, Angew. Chem. Int. Ed., 49, 9174 (2010); https://doi.org/10.1002/anie.201005409
C.H. Cook and E.K. Kang, Arch. Pharm. Res., 4, 137 (1981); https://doi.org/10.1007/BF02855758
C.H. Cook and Y.S. Chung, Arch. Pharm. Res., 4, 133 (1981); https://doi.org/10.1007/BF02855757
G. Gopalakrishnan, V. Kasinath, N.D. Pradeep Singh, V.P. Santhana Krishnan, K.A. Solomon and S.S. Rajan, Molecules, 7, 412 (2002); https://doi.org/10.3390/70500412
M. Murai, R. Hatano, S. Kitabata and K. Ohe, Chem. Commun., 47, 2375 (2011); https://doi.org/10.1039/C0CC04385K
D. Urankar, I. Rutar, B. Modec and D. Dolenc, Eur. J. Org. Chem., 2005, 2349 (2005); https://doi.org/10.1002/ejoc.200400829
J.J. Xia, X.L. Wu and G.W. Wang, ARKIVOC, 2008, 22 (2008); https://doi.org/10.3998/ark.5550190.0009.g03
A.J. Borah and P. Phukan, Tetrahedron Lett., 53, 3035 (2012); https://doi.org/10.1016/j.tetlet.2012.04.011
D.K. Yadav, A.K. Yadav, V.P. Srivastava, G. Watal and L.D.S. Yadav, Tetrahedron Lett., 53, 2890 (2012); https://doi.org/10.1016/j.tetlet.2012.03.129
K. Richa, R. Karmaker, N. Longkumer, V. Das, P.J. Bhuyan, M. Pal and U.B. Sinha, Anticancer. Agents Med. Chem., 19, 2211 (2020); https://doi.org/10.2174/1871520619666190930122137
S.C. Jeyaseelan, A.M.F. Benial and K. Kaviyarasu, J. Mol. Recognit., 34, (2020); https://doi.org/10.1002/jmr.2873
M. Chaudhary, N. Kumar, A. Baldi, R. Chandra, M.A. Babu and J. Madan, J. Biomol. Struct. Dyn., 38, 1335 (2020); https://doi.org/10.1080/07391102.2019.1604266
É.A. Enyedy, G.M. Bognár, N.V. Nagy, T. Jakusch, T. Kiss and D. Gambino, Polyhedron, 67, 242 (2014); https://doi.org/10.1016/j.poly.2013.08.053
A.S. Berezin, J. Mol. Struct., 1336, 142110 (2025); https://doi.org/10.1016/j.molstruc.2025.142110
K.S. Patel, J.C. Patel, H.R. Dholariya and K.D. Patel, Spectrochim. Acta A Mol. Biomol. Spectrosc., 96, 468 (2012); https://doi.org/10.1016/j.saa.2012.05.057
B. Jadou, A. Hameed and A. Al-Rubaie, Egypt. J. Chem., 0, 0 (2020); https://doi.org/10.21608/ejchem.2020.43195.2872
D.G. Ivanchenko, N.I. Romanenko and V.I. Kornienko, Chem. Nat. Compd., 54, 532 (2018); https://doi.org/10.1007/s10600-018-2397-9
N. Longkumer, K. Richa, R. Karmaker, V. Kuotsu, A. Supong, L. Jamir, P. Bharali and U. Bora Sinha, Acta Chim. Slov., 66, 276 (2019); https://doi.org/10.17344/acsi.2018.4580
K. Iwasa, D.U. Lee, S.I. Kang and W. Wiegrebe, J. Nat. Prod., 61, 1150 (1998); https://doi.org/10.1021/np980044+
H. Vural and M. Kara, Optik, 145, 479 (2017); https://doi.org/10.1016/j.ijleo.2017.08.032
V.K. Bhovi, Y.D. Bodke, S. Biradar, B.E.K. Swamy and S. Umesh, Phosphorus Sulfur Silicon Relat. Elem., 185, 110 (2009); https://doi.org/10.1080/10426500902717317
G.S. Fasiuddin, F.L.A. Khan, S. Sakthivel, S. Muthu and A. Irfan, J. Mol. Struct., 1261, 132815 (2022); https://doi.org/10.1016/j.molstruc.2022.132815
R.V. Kusurkar, R.H. Rayani, D.R. Parmar, M.N. Bhoi, V.H. Zunjar and J.Y. Soni, Results Chem., 4, 100357 (2022); https://doi.org/10.1016/j.rechem.2022.100357
W. Zhao, X. Feng, S. Ban, W. Lin and Q. Li, Bioorg. Med. Chem. Lett., 20, 4132 (2010); https://doi.org/10.1016/j.bmcl.2010.05.068
H. Wang, K. Wen, N. Nurahmat, Y. Shao, H. Zhang, C. Wei, Y. Li, Y. Shen and Z. Sun, Beilstein J. Org. Chem., 8, 744 (2012); https://doi.org/10.3762/bjoc.8.84
S.P. Borikar, T. Daniel and V. Paul, Tetrahedron Lett., 50, 1007 (2009); https://doi.org/10.1016/j.tetlet.2008.12.053
B. Das, K. Venkateswarlu, A. Majhi, V. Siddaiah and K.R. Reddy, J. Mol. Catal. Chem., 267, 30 (2007); https://doi.org/10.1016/j.molcata.2006.11.002
P.V. Ghorpade, D.A. Pethsangave, S. Some and G.S. Shankarling, J. Org. Chem., 83, 7388 (2018); https://doi.org/10.1021/acs.joc.8b00188
H. Tajik, I. Mohammadpoor-Baltork, P. Hassan-Zadeh and H.R. Rashtabadi, Russ. J. Org. Chem., 43, 1282 (2007); https://doi.org/10.1134/S1070428007090047
Y.K. Al-Majedy, D.L. Al-Duhaidahawi, K.F. Al-Azawi, A.A. Al-Amiery, A.A.H. Kadhum and A.B. Mohamad, Molecules, 21, 135 (2016); https://doi.org/10.3390/molecules21020135
D. Lahiri, S. Dash, R. Dutta and M. Nag, J. Biosci., 44, 52 (2019); https://doi.org/10.1007/s12038-019-9868-4
K. Ecevit, A.A. Barros, J.M. Silva and R.L. Reis, Future Pharmacol., 2, 460 (2022); https://doi.org/10.3390/futurepharmacol2040030
M. Sathiya Deepika, R. Thangam, P. Sakthidhasan, S. Arun, S. Sivasubramanian and R. Thirumurugan, Food Control, 90, 282 (2018); https://doi.org/10.1016/j.foodcont.2018.02.044
W. Lee and D.G. Lee, Biochem. Biophys. Res. Commun., 489, 228 (2017); https://doi.org/10.1016/j.bbrc.2017.05.138
S.C. Yang, C.H. Tseng, P.W. Wang, P.L. Lu, Y.H. Weng, F.L. Yen and J.Y. Fang, Front. Microbiol., 8, 1103 (2017); https://doi.org/10.3389/fmicb.2017.01103
X. Ren, P. An, X. Zhai, S. Wang and Q. Kong, Lebensm. Wiss. Technol., 101, 100 (2019); https://doi.org/10.1016/j.lwt.2018.11.038
D.K. Joung, S.H. Mun, S.H. Choi, O.H. Kang, S.B. Kim, Y.S. Lee, T. Zhou, R. Kong, J.G. Choi, D.W. Shin, Y.C. Kim, D.S. Lee and D.Y. Kwon, Exp. Ther. Med., 12, 1579 (2016); https://doi.org/10.3892/etm.2016.3486
D. Singh, R. Mendonsa, M. Koli, M. Subramanian and S.K. Nayak, Toxicol. Appl. Pharmacol., 367, 23 (2019); https://doi.org/10.1016/j.taap.2019.01.025
F. Bakkali, S. Averbeck, D. Averbeck and M. Idaomar, Food Chem. Toxicol., 46, 446 (2008); https://doi.org/10.1016/j.fct.2007.09.106
P.M.S. Sahoo, S. Behera, R. Behura, A. Acharya, D. Biswal, S.K. Suna, R. Sahoo, R.C. Soren and B.R. Jali, Biointerface Res. Appl. Chem., 12, 3247 (2021); https://doi.org/10.33263/BRIAC123.32473258
O. Inanami, T. Yamamori, H. Shionoya and M. Kuwabara, eds.: H. Sawada, H. Yokosawa and C.C. Lambert, Antioxidant Activity of Quinone-derivatives from Freeze-dried Powder of the Ascidians. In: The Biology of Ascidians. Springer, Tokyo, pp. 457–462 (2001).
S. Debnath, A. Agarwal, N.R. Kumar and A. Bedi, Future Pharmacol., 2, 595 (2022); https://doi.org/10.3390/futurepharmacol2040036
A.A. Al-Amiery, Res. Chem. Intermed., 38, 745 (2012); https://doi.org/10.1007/s11164-011-0414-8
A.A. Almehizia, H.A. Abuelizz, H.A.A. Taie, A. ElHassane, M. Marzouk and R. Al-Salahi, Saudi Pharm. J., 27, 133 (2019); https://doi.org/10.1016/j.jsps.2018.09.006
H. Cao, W.X. Cheng, C. Li, X.L. Pan, X.G. Xie and T.H. Li, J. Mol. Struct. THEOCHEM, 719, 177 (2005); https://doi.org/10.1016/j.theochem.2005.01.029
M. Reis, B. Lobato, J. Lameira, A.S. Santos and C.N. Alves, Eur. J. Med. Chem., 42, 440 (2007); https://doi.org/10.1016/j.ejmech.2006.11.008
N.F. Santos-Sánchez, R. Salas-Coronado, C. Villanueva-Cañongo and B. Hernández-Carlos, in eds.: E. Shalaby, Antioxidant Compounds and Their Antioxidant Mechanism, IntechOpen eBooks (2019).
N. Zhang, Y. Wu, M. Qiao, W. Yuan, X. Li, X. Wang, J. Sheng and C. Zi, Struct. Chem., 33, 795 (2022); https://doi.org/10.1007/s11224-022-01895-2
K. Richa, R. Karmaker, T. Ao, N. Longkumer, B. Singha and U.B. Sinha, Chem. Phys. Lett., 753, 137611 (2020); https://doi.org/10.1016/j.cplett.2020.137611
B. Singha, B. Arora, R. Karmaker, K. Richa, N. Longkumer, M. Abid, H.T. Abdulhameed and U.B. Sinha, ChemistrySelect, 9, e202304761 (2024); https://doi.org/10.1002/slct.202304761
M. Gupta, R. Sharma and A. Kumar, Comput. Biol. Chem., 76, 210 (2018); https://doi.org/10.1016/j.compbiolchem.2018.06.005
B. Chami, N.J.J. Martin, J.M. Dennis and P.K. Witting, Arch. Biochem. Biophys., 645, 61 (2018); https://doi.org/10.1016/j.abb.2018.03.012
Y. Aratani, Arch. Biochem. Biophys., 640, 47 (2018); https://doi.org/10.1016/j.abb.2018.01.004
P.T. Goud, D. Bai and H.M. Abu-Soud, Int. J. Biol. Sci., 17, 62 (2021); https://doi.org/10.7150/ijbs.51811
B.S. Chethan and N.K. Lokanath, J. Mol. Struct., 1251, 131936 (2022); https://doi.org/10.1016/j.molstruc.2021.131936
N.S. Venkataramanan and A. Suvitha, J. Mol. Graph. Model., 81, 50 (2018); https://doi.org/10.1016/j.jmgm.2018.02.010
W. Humphrey, A. Dalke and K. Schulten, J. Mol. Graph., 14, 33 (1996); https://doi.org/10.1016/0263-7855(96)00018-5
T. Lu and F. Chen, J. Comput. Chem., 33, 580 (2012); https://doi.org/10.1002/jcc.22885
J. Yana, N. Chiangraeng, P. Nimmanpipug and V.S. Lee, J. Mol. Graph. Model., 107, 107946 (2021); https://doi.org/10.1016/j.jmgm.2021.107946
M. Oyaizu, Eiyogaku Zasshi, 44, 307 (1986); https://doi.org/10.5264/eiyogakuzashi.44.307
M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery, Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, O. Yazyev, R.E. Stratmann, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, P. Salvador, G.A. Voth, J.J. Dannenberg, S. Dapprich, A.D. Daniels, O. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski and D.J. Fox, Gaussian 09, Revision A.02, Gaussian, Inc., Wallingford CT (2009).
R.D. Vargas-Sánchez, A.M. Mendoza-Wilson, R.R. Balandrán-Quintana, G.R. Torrescano-Urrutia and A. Sánchez-Escalante, Comput. Theor. Chem., 1058, 21 (2015); https://doi.org/10.1016/j.comptc.2015.01.014
R. Karmaker, N.B. Kuotsu, A. Ganguly, N. Guchhait and U.B. Sinha, Chem. Phys. Lett., 711, 118 (2018); https://doi.org/10.1016/j.cplett.2018.09.022
P. Škorňa, J. Rimarčík and E. Klein, Acta Chim. Slov., 7, 31 (2014); https://doi.org/10.2478/acs-2014-0006
G. Wang, Y. Xue, L. An, Y. Zheng, Y. Dou, L. Zhang and Y. Liu, Food Chem., 171, 89 (2015); https://doi.org/10.1016/j.foodchem.2014.08.106
S.J. Blanksby and G.B. Ellison, Acc. Chem. Res., 36, 255 (2003); https://doi.org/10.1021/ar020230d
G. Mazzone, N. Malaj, A. Galano, N. Russo and M. Toscano, RSC Adv., 5, 565 (2015); https://doi.org/10.1039/C4RA11733F
A. Galano, M. Francisco-Márquez and J.R. Alvarez-Idaboy, Phys. Chem. Chem. Phys., 13, 11199 (2011); https://doi.org/10.1039/c1cp20722a
G. Bitencourt-Ferreira and W.F. De Azevedo Jr., Methods Mol. Biol., 2053, 149 (2019); https://doi.org/10.1007/978-1-4939-9752-7_10
D. Pathak, N. Chadha and O. Silakari, J. Mol. Graph. Model., 70, 85 (2016); https://doi.org/10.1016/j.jmgm.2016.09.013
H.V. Sanghani, S.H. Ganatra and R. Pande, J. Comput. Sci. Syst. Biol., 05, (2012); https://doi.org/10.4172/jcsb.1000085
B. Silvi and A. Savin, Nature, 371, 683 (1994); https://doi.org/10.1038/371683a0
G. Xiong, Z. Wu, J. Yi, L. Fu, Z. Yang, C. Hsieh, M. Yin, X. Zeng, C. Wu, A. Lu, X. Chen, T. Hou and D. Cao, Nucleic Acids Res., 49(W1), W5 (2021); https://doi.org/10.1093/nar/gkab255
V. Polshettiwar, R.S. Varma, Green Chem., 12, 743 (2010); https://doi.org/10.1039/b921171c
K. Hartonen, M.L. Riekkola, Elsevier eBooks, 19–55 (2017).
B.S. Furniss, A.J. Hannaford, P.W.G. Smith and A.R. Tatchell, Vogel’s Text Book of Practical Organic Chemistry, Longman: New York, edn. 5 (1989).
S. Santosh Kumar, K.I. Priyadarsini and K.B. Sainis, Redox Rep., 7, 35 (2002); https://doi.org/10.1179/135100002125000163
M. Singhal, A. Paul, H.P. Singh, S.K. Dubey and K. Gaur, J. Chem. Pharm. Res., 3, 639 (2011).
R.J. Ouellette and J.D. Rawn, Principles of Organic Chemistry, Elsevier eBooks, edn. 2, pp. 51–86 (2018).
C. Zheng and O. Rubel, J. Phys. Chem. C, 121, 11977 (2017); https://doi.org/10.1021/acs.jpcc.7b00333
B. Ahmed, P. Barukial and B. Bezbaruah, J. Indian Chem. Soc., 100, 101027 (2023); https://doi.org/10.1016/j.jics.2023.101027
A. Daina and V. Zoete, ChemMedChem, 11, 1117 (2016); https://doi.org/10.1002/cmdc.201600182
R.C. Braga, V.M. Alves, M.F.B. Silva, E. Muratov, D. Fourches, L.M. Lião, A. Tropsha and C.H. Andrade, Mol. Inform., 34, 698 (2015); https://doi.org/10.1002/minf.201500040