Copyright (c) 2025 Ramasamy V, Thenpandiyan E, Suresh G, Senthil S, Sathishpriya T

This work is licensed under a Creative Commons Attribution 4.0 International License.
Antibacterial and Anticancer Activities of Naturally Derived Nano Calcium Carbonate for Biomedical Applications
Corresponding Author(s) : V. Ramasamy
Asian Journal of Chemistry,
Vol. 37 No. 8 (2025): Vol 37 Issue 8, 2025
Abstract
Pristine CaCO3 nanoparticles was synthesized through an eco-friendly biomimetic route using a natural calcium carbonate source of CaMg(CO3)2 (dolomite rock). The physico-chemical properties of prepared CaCO3 nanoparticles were assessed using FTIR, XRD, FE-SEM, HR-TEM and XPS analyses. The presence of the functional groups through FTIR analysis confirmed the presence of CaCO3 (calcite polymorph) in the synthesized sample. The occurrence of rhombohedral CaCO3 with a well-crystalline nature was confirmed through XRD pattern and calculated crystallite size is about 25 nm. The FE-SEM and HR-TEM analyses exhibit the spherical with few rhombohedral like morphology. The presence of binding energies of Ca, O and C confirms that the synthesized sample is in the pure form of CaCO3. The biomedical activities of prepared CaCO3 nanoparticles were examined through antibacterial and anticancer activities using Gram-positive (Staphylococcus aureus) and Gram-negative bacteria (Salmonella sp.) and the human breast cancer cell line MCF-7. These results show that CaCO3 nanoparticles act as good antibacterial agents. The cytotoxicity effect of CaCO3 nanoparticles on MCF-7 is 18% cell viability at 1000 µg/mL. The calculated IC50 value of CaCO3 nanoparticles against MCF-7 is 229.10 µg/mL. These results show that the naturally derived CaCO3 nanoparticles are potent anticancer drugs against human breast cancer cell lines.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- D. Render, T. Samuel, H. King, M. Vig, S. Jeelani, R.J. Babu and V. Rangari, J. Nanomater., 2016, 3170248 (2016); https://doi.org/10.1155/2016/3170248
- C. Tan, C. Dima, M. Huang, E. Assadpour, J. Wang, M.S. Kharazmi, B. Sun, and S.M. Jafari, Adv. Colloid Interface Sci., 309, 102791 (2022); https://doi.org/10.1016/j.cis.2022.102791
- Y.-Q. Niu, J.-H. Liu, C. Aymonier, S. Fermani, D. Kralj, G. Falini and C.-H. Zhou, Chem. Soc. Rev., 51, 7883 (2022); https://doi.org/10.1039/D1CS00519G
- M.H. Azarian and W. Sutapun, Front. Mater., 9, 1024977 (2022); https://doi.org/10.3389/fmats.2022.1024977
- P. Zhao, Y. Tian, J. You, X. Hu and Y. Liu, Bioengineering, 9, 691 (2022); https://doi.org/10.3390/bioengineering9110691
- X. Yang, Y. Sun, H. Zhang, F. Liu, Q. Chen, Q. Shen, Z. Kong, Q. Wei, J.-W. Shen and Y. Guo, Nanoscale, 16, 6876 (2024); https://doi.org/10.1039/D3NR05986C
- N.S. Alduraihem, R.S. Bhat, S.A. Al-Zahrani, D.M. Elnagar, H.M. Alobaid and M.H. Daghestani, Processes, 11, 301 (2023); https://doi.org/10.3390/pr11020301
- V. Ramasamy, P. Anand and G. Suresh, Adv. Powder Technol., 29, 818 (2018); https://doi.org/10.1016/j.apt.2017.12.023
- S.F.A. Abdullah, S.S.M. Saleh, N.F. Mohammad, M.S. Idris and H.R. Saliu, J. Phys.: Conf. Ser., 2080, 012009 (2021); https://doi.org/10.1088/1742-6596/2080/1/012009
- R. Venkidasamy, T. Elumalai, S. Govindhasamy, S. Tharmalingam and J.J.S. Emmanuel Rajan, Chem. Eng. Commun., 211, 229 (2024); https://doi.org/10.1080/00986445.2023.2233002
- V. Ramasamy, E. Thenpandiyan, G. Suresh, T. Sathishpriya and S. Sagadevan, Opt. Mater., 142, 114130 (2023); https://doi.org/10.1016/j.optmat.2023.114130
- A. Roy, S.S. Gauri, M. Bhattacharya and J. Bhattacharya, J. Biomed. Nanotechnol., 9, 1 (2013); https://doi.org/10.1166/jbn.2013.1681
- V. Popova, Y. Poletaeva, A. Chubarov and E. Dmitrienko, Pharmaceutics, 15, 771 (2023); https://doi.org/10.3390/pharmaceutics15030771
- V. Ramasamy, T. Sathishpriya, E. Thenpandiyan, G. Suresh and S. Sagadevan, Inorg. Chem. Commun., 155, 111062 (2023); https://doi.org/10.1016/j.inoche.2023.111062
- H.H. Adler and P.F. Kerr, Am. Mineral., 48, 839 (1963).
- F.A.Z. Sayed, N.G. Eissa, Y. Shen, D.A. Hunstad, K.L. Wooley and M. Elsabahy, J. Nanobiotechnology, 20, 536 (2022); https://doi.org/10.1186/s12951-022-01733-x
- J.Y. Cheon, S.J. Kim, Y.H. Rhee, O.H. Kwon and W.H. Park, Int. J. Nanomedicine, 14, 2773 (2019); https://doi.org/10.2147/IJN.S196472
- T. Roychowdhury, S. Bahr, P. Dietrich, M. Meyer, A. Thißen and M.R. Linford, Surf. Sci. Spectra, 26, 014025 (2019); https://doi.org/10.1116/1.5109266
- Q. Wang, Y. Wang, J. Tang, Z. Yang, L. Zhang and X. Huang, Chemosphere, 303, 135048 (2022); https://doi.org/10.1016/j.chemosphere.2022.135048
- S. Thakur, J. Chaudhary, A. Thakur, O. Gunduz, W.F. Alsanie, C. Makatsoris and V.K. Thakur, Chemosphere, 303, 134917 (2022); https://doi.org/10.1016/j.chemosphere.2022.134917
- L. Wang, J. Wang, Z. Wang, C. He, W. Lyu, W. Yan and L. Yang, Chem. Eng. J., 354, 623 (2018); https://doi.org/10.1016/j.cej.2018.08.074
- R. Dobrucka and J. Dlugaszewska, Saudi J. Biol. Sci., 23, 517 (2016); https://doi.org/10.1016/j.sjbs.2015.05.016
- R. Sinha, R. Karan, A. Sinha and S.K. Khare, Bioresour. Technol., 102, 1516 (2011); https://doi.org/10.1016/j.biortech.2010.07.117
- P.K. Stoimenov, R.L. Klinger, G.L. Marchin and K.J. Klabunde, Langmuir, 18, 6679 (2002); https://doi.org/10.1021/la0202374
- L. Zhang, Y. Jiang, Y. Ding, M. Povey and D. York, J. Nanopart. Res., 9, 479 (2007); https://doi.org/10.1007/s11051-006-9150-1
- N.I. Hammadi, Y. Abba, M.N.M. Hezmee, I.S.A. Razak, A.Z. Jaji, T. Isa, S.K. Mahmood and M.Z.A.B. Zakaria, Pharm. Res., 34, 1193 (2017); https://doi.org/10.1007/s11095-017-2135-1
References
D. Render, T. Samuel, H. King, M. Vig, S. Jeelani, R.J. Babu and V. Rangari, J. Nanomater., 2016, 3170248 (2016); https://doi.org/10.1155/2016/3170248
C. Tan, C. Dima, M. Huang, E. Assadpour, J. Wang, M.S. Kharazmi, B. Sun, and S.M. Jafari, Adv. Colloid Interface Sci., 309, 102791 (2022); https://doi.org/10.1016/j.cis.2022.102791
Y.-Q. Niu, J.-H. Liu, C. Aymonier, S. Fermani, D. Kralj, G. Falini and C.-H. Zhou, Chem. Soc. Rev., 51, 7883 (2022); https://doi.org/10.1039/D1CS00519G
M.H. Azarian and W. Sutapun, Front. Mater., 9, 1024977 (2022); https://doi.org/10.3389/fmats.2022.1024977
P. Zhao, Y. Tian, J. You, X. Hu and Y. Liu, Bioengineering, 9, 691 (2022); https://doi.org/10.3390/bioengineering9110691
X. Yang, Y. Sun, H. Zhang, F. Liu, Q. Chen, Q. Shen, Z. Kong, Q. Wei, J.-W. Shen and Y. Guo, Nanoscale, 16, 6876 (2024); https://doi.org/10.1039/D3NR05986C
N.S. Alduraihem, R.S. Bhat, S.A. Al-Zahrani, D.M. Elnagar, H.M. Alobaid and M.H. Daghestani, Processes, 11, 301 (2023); https://doi.org/10.3390/pr11020301
V. Ramasamy, P. Anand and G. Suresh, Adv. Powder Technol., 29, 818 (2018); https://doi.org/10.1016/j.apt.2017.12.023
S.F.A. Abdullah, S.S.M. Saleh, N.F. Mohammad, M.S. Idris and H.R. Saliu, J. Phys.: Conf. Ser., 2080, 012009 (2021); https://doi.org/10.1088/1742-6596/2080/1/012009
R. Venkidasamy, T. Elumalai, S. Govindhasamy, S. Tharmalingam and J.J.S. Emmanuel Rajan, Chem. Eng. Commun., 211, 229 (2024); https://doi.org/10.1080/00986445.2023.2233002
V. Ramasamy, E. Thenpandiyan, G. Suresh, T. Sathishpriya and S. Sagadevan, Opt. Mater., 142, 114130 (2023); https://doi.org/10.1016/j.optmat.2023.114130
A. Roy, S.S. Gauri, M. Bhattacharya and J. Bhattacharya, J. Biomed. Nanotechnol., 9, 1 (2013); https://doi.org/10.1166/jbn.2013.1681
V. Popova, Y. Poletaeva, A. Chubarov and E. Dmitrienko, Pharmaceutics, 15, 771 (2023); https://doi.org/10.3390/pharmaceutics15030771
V. Ramasamy, T. Sathishpriya, E. Thenpandiyan, G. Suresh and S. Sagadevan, Inorg. Chem. Commun., 155, 111062 (2023); https://doi.org/10.1016/j.inoche.2023.111062
H.H. Adler and P.F. Kerr, Am. Mineral., 48, 839 (1963).
F.A.Z. Sayed, N.G. Eissa, Y. Shen, D.A. Hunstad, K.L. Wooley and M. Elsabahy, J. Nanobiotechnology, 20, 536 (2022); https://doi.org/10.1186/s12951-022-01733-x
J.Y. Cheon, S.J. Kim, Y.H. Rhee, O.H. Kwon and W.H. Park, Int. J. Nanomedicine, 14, 2773 (2019); https://doi.org/10.2147/IJN.S196472
T. Roychowdhury, S. Bahr, P. Dietrich, M. Meyer, A. Thißen and M.R. Linford, Surf. Sci. Spectra, 26, 014025 (2019); https://doi.org/10.1116/1.5109266
Q. Wang, Y. Wang, J. Tang, Z. Yang, L. Zhang and X. Huang, Chemosphere, 303, 135048 (2022); https://doi.org/10.1016/j.chemosphere.2022.135048
S. Thakur, J. Chaudhary, A. Thakur, O. Gunduz, W.F. Alsanie, C. Makatsoris and V.K. Thakur, Chemosphere, 303, 134917 (2022); https://doi.org/10.1016/j.chemosphere.2022.134917
L. Wang, J. Wang, Z. Wang, C. He, W. Lyu, W. Yan and L. Yang, Chem. Eng. J., 354, 623 (2018); https://doi.org/10.1016/j.cej.2018.08.074
R. Dobrucka and J. Dlugaszewska, Saudi J. Biol. Sci., 23, 517 (2016); https://doi.org/10.1016/j.sjbs.2015.05.016
R. Sinha, R. Karan, A. Sinha and S.K. Khare, Bioresour. Technol., 102, 1516 (2011); https://doi.org/10.1016/j.biortech.2010.07.117
P.K. Stoimenov, R.L. Klinger, G.L. Marchin and K.J. Klabunde, Langmuir, 18, 6679 (2002); https://doi.org/10.1021/la0202374
L. Zhang, Y. Jiang, Y. Ding, M. Povey and D. York, J. Nanopart. Res., 9, 479 (2007); https://doi.org/10.1007/s11051-006-9150-1
N.I. Hammadi, Y. Abba, M.N.M. Hezmee, I.S.A. Razak, A.Z. Jaji, T. Isa, S.K. Mahmood and M.Z.A.B. Zakaria, Pharm. Res., 34, 1193 (2017); https://doi.org/10.1007/s11095-017-2135-1