Copyright (c) 2025 Dr Vijayalakshmi Pandurangan

This work is licensed under a Creative Commons Attribution 4.0 International License.
Visible-Light-Activated Graphitic Carbon Nitride/CdS Heterostructure for Superior Photocatalytic Removal of Amoxicillin
Corresponding Author(s) : Pandurangan Vijayalakshmi
Asian Journal of Chemistry,
Vol. 37 No. 8 (2025): Vol 37 Issue 8, 2025
Abstract
In this study, a S-scheme graphitic carbon nitride/cadmium sulfide (g-C3N4/CdS) nanocomposite was synthesized as well as evaluated of its photocatalytic efficiency within degrading amoxicillin (AMX) from aqueous solutions underneath visible-light exposure. The structural as well optical properties of the nanocomposite were characterized using X-ray diffraction (XRD), UV-Vis diffuse reflectance spectroscopy (UV-DRS), scanning electron microscopy (SEM) and electrochemical impedance spectroscopy (EIS). The g-C3N4/CdS nanocomposite exhibited a narrow band gap of 1.9 eV and achieved an impressive AMX degradation efficiency of 87.08% (rate constant k = 0.0149 min–1) within 150 min, surpassing the performance of the bare nanocomponents. Reactive species trapping experiments identified photogenerated holes (h+) as well as superoxide radicals (O2•-) as the dominant species of active in the degradation processes. Moreover, the photocatalyst demonstrated excellent reusability and chemical stability over three successive cycles, underscoring its potential for practical applications in the removal for organic contaminants in water.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- K.D. Radosavljevic, A.V. Golubovic, M.M. Radišic, A.R. Mladenovic, D.Z. Mijin and S.D. Petrovic, Chem. Ind. Chem. Eng. Q., 23, 187 (2017); https://doi.org/10.2298/CICEQ160122030R
- H.F. Rocha, V. Silva, D.L. Lima and V. Calisto, Case Stud. Chem. Environ. Eng., 9, 100724 (2024); https://doi.org/10.1016/j.cscee.2024.100724
- I.F. Silva, I.F. Teixeira, R.D. Rios, G.M. do Nascimento, I. Binatti, H.F. Victória, K. Krambrock, L.A. Cury, A.P.C. Teixeira and H.O. Stumpf, J. Hazard. Mater., 401, 123713 (2021); https://doi.org/10.1016/j.jhazmat.2020.123713
- A.S. Oberoi, Y. Jia, H. Zhang, S.K. Khanal and H. Lu, Environ. Sci. Technol., 53, 7234 (2019); https://doi.org/10.1021/acs.est.9b01131
- R.K. Langbehn, C. Michels and H.M. Soares, Environ. Pollut., 275, 116603 (2021); https://doi.org/10.1016/j.envpol.2021.116603
- P. Darvishi, S.A. Mousavi, A. Mahmoudi and D. Nayeri, Environ. Sci.: Water Res. Technol., 9, 11 (2023); https://doi.org/10.1039/D1EW00912E
- I.Y. Qudsieh, M.A. Ali and I.M. Maafa, Crystals, 15, 167 (2025); https://doi.org/10.3390/cryst15020167
- H. Xu, W.J. Cooper, J. Jung and W. Song, Water Res., 45, 632 (2011); https://doi.org/10.1016/j.watres.2010.08.024
- M. Saeed, M. Muneer, A.U. Haq and N. Akram, Environ. Sci. Pollut. Res. Int., 29, 293 (2022); https://doi.org/10.1007/s11356-021-16389-7
- F.B. Li and X.Z. Li, Chemosphere, 48, 1103 (2002); https://doi.org/10.1016/S0045-6535(02)00201-1
- R. Ghamarpoor, A. Fallah and M. Jamshidi, ACS Omega, 9, 25457 (2024); https://doi.org/10.1021/acsomega.3c08717
- S.C. Yan, Z.S. Li and Z.G. Zou, Langmuir, 25, 10397 (2009); https://doi.org/10.1021/la900923z
- M. Hamity, R.H. Lema, C.A. Suchetti and H.E. Gsponer, J. Photochem. Photobiol. Chem., 200, 445 (2008); https://doi.org/10.1016/j.jphotochem.2008.09.010
- F. Soleimani and A. Nezamzadeh-Ejhieh, J. Mater. Res. Technol., 9, 16237 (2020); https://doi.org/10.1016/j.jmrt.2020.11.091
- Z. Yu, B. Yin, F. Qu and X. Wu, Chem. Eng. J., 258, 203 (2014); https://doi.org/10.1016/j.cej.2014.07.041
- Y. Song, J. Tian, S. Gao, P. Shao, J. Qi and F. Cui, Appl. Catal. B, 210, 88 (2017); https://doi.org/10.1016/j.apcatb.2017.03.059
- S.C. Yan, Z.S. Li and Z.G. Zou, Langmuir, 26, 3894 (2010); https://doi.org/10.1021/la904023j
- N. Pourshirband, A. Nezamzadeh-Ejhieh and S.N. Mirsattari, Spectrochim. Acta A Mol. Biomol. Spectrosc., 248, 119110 (2021); https://doi.org/10.1016/j.saa.2020.119110
- B. Shao, X. Liu, Z. Liu, G. Zeng, W. Zhang, Q. Liang, Y. Liu, Q. He, X. Yuan, D. Wang, S. Luo and S. Gong, Chem. Eng. J., 374, 479 (2019); https://doi.org/10.1016/j.cej.2019.05.202
- S. Shenoy, K. Tarafder and K. Sridharan, Physica B, 595, 412367 (2020); https://doi.org/10.1016/j.physb.2020.412367
- J. Fang, K. Xie, Q. Kang and Y. Gou, J. Sci. Adv. Mater. Dev., 7, 100409 (2022); https://doi.org/10.1016/j.jsamd.2021.100409
- S. Al Mamari, F.E. Suliman, Y. Kim and R. Selvaraj, Adv. Powder Technol., 34, 104026 (2023); https://doi.org/10.1016/j.apt.2023.104026
- G. Liu, M. Liao, Z. Zhang, H. Wang, D. Chen and Y. Feng, Sep. Purif. Technol., 244, 116618 (2020); https://doi.org/10.1016/j.seppur.2020.116618
- X. Sun, K. He, Z. Chen, H. Yuan, F. Guo and W. Shi, Sep. Purif. Technol., 324, 124600 (2023); https://doi.org/10.1016/j.seppur.2023.124600
- K. Li, M. Chen, L. Chen, S. Zhao, W. Xue, Z. Han and Y. Han, Processes, 11, 528 (2023); https://doi.org/10.3390/pr11020528
- S.S.A. Al-Razzaq and A.J. Ghazai, AIP Conf. Proc., 3303, 030002 (2025); https://doi.org/10.1063/5.0266765
- J.H. Pereira, A.C. Reis, V. Homem, J.A. Silva, A. Alves, M.T. Borges, R.A.R. Boaventura, V.J.P. Vilar and O.C. Nunes, Water Res., 65, 307 (2014); https://doi.org/10.1016/j.watres.2014.07.037
- D. Dimitrakopoulou, I. Rethemiotaki, N.P. Xekoukoulotakis, D. Venieri, Z. Frontistis and D. Mantzavinos, J. Environ. Manage., 98, 168 (2012); https://doi.org/10.1016/j.jenvman.2012.01.010
- M. Qutob, F. Shakeel, P. Alam, S. Alshehri, M.M. Ghoneim and M. Rafatullah, Environ. Res., 214, 113833 (2022); https://doi.org/10.1016/j.envres.2022.113833
- J. Wang, G. Wang, B. Cheng, J. Yu and J. Fan, Chin. J. Catal., 42, 56 (2021); https://doi.org/10.1016/S1872-2067(20)63634-8
- M. Caux, F. Fina, J.T. Irvine, H. Idriss and R. Howe, Catal. Today, 287, 182 (2017); https://doi.org/10.1016/j.cattod.2016.11.007
- K. Hemkumar, P. Ananthi and A. Pius, J. Mol. Liq., 425, 127274 (2025); https://doi.org/10.1016/j.molliq.2025.127274
- S. Rani, A. Garg and N. Singh, Toxicol. Environ. Chem., 103, 137 (2021); https://doi.org/10.1080/02772248.2021.1931214
- J. Wang, J. Feng and C. Wei, Appl. Surf. Sci., 609, 155324 (2023); https://doi.org/10.1016/j.apsusc.2022.155324
- N. Maldonado-Carmona, G. Piccirillo, J. Godard, K. Heuzé, E. Genin, N. Villandier, M.J.F. Calvete and S. Leroy-Lhez, Photochem. Photobiol. Sci., 23, 587 (2024); https://doi.org/10.1007/s43630-024-00536-3
- H.T.A. Alamir, R.R. Abass, O.H. Salah, M.M. Karim, S. Ahjel, S.J. Al-Shuwaili, W.D. Kadhim and R.A. Ahmed, Adv. J. Chem., 7A, 438 (2024); https://doi.org/10.48309/ajca.2024.449003.1501
- Q. Li, H. Kong, P. Li, J. Shao and Y. He, J. Hazard. Mater., 373, 437 (2019); https://doi.org/10.1016/j.jhazmat.2019.03.066
- M. Chaudhuri, M.Z.B.A. Wahap and A.C. Affam, Desalination Water Treat., 51, 7255 (2013); https://doi.org/10.1080/19443994.2013.773565
- B.S. Silva and A.L. de Castro Peixoto, Braz. J. Chem. Eng., 41, 149 (2024); https://doi.org/10.1007/s43153-023-00364-5
- D. Balarak, N. Mengelizadeh, P. Rajiv and K. Chandrika, Environ. Sci. Pollut. Res. Int., 28, 49743 (2021); https://doi.org/10.1007/s11356-021-13525-1
- T.T. Nguyen, S.N. Nam, J. Son and J. Oh, Sci. Rep., 9, 9349 (2019); https://doi.org/10.1038/s41598-019-45644-8
References
K.D. Radosavljevic, A.V. Golubovic, M.M. Radišic, A.R. Mladenovic, D.Z. Mijin and S.D. Petrovic, Chem. Ind. Chem. Eng. Q., 23, 187 (2017); https://doi.org/10.2298/CICEQ160122030R
H.F. Rocha, V. Silva, D.L. Lima and V. Calisto, Case Stud. Chem. Environ. Eng., 9, 100724 (2024); https://doi.org/10.1016/j.cscee.2024.100724
I.F. Silva, I.F. Teixeira, R.D. Rios, G.M. do Nascimento, I. Binatti, H.F. Victória, K. Krambrock, L.A. Cury, A.P.C. Teixeira and H.O. Stumpf, J. Hazard. Mater., 401, 123713 (2021); https://doi.org/10.1016/j.jhazmat.2020.123713
A.S. Oberoi, Y. Jia, H. Zhang, S.K. Khanal and H. Lu, Environ. Sci. Technol., 53, 7234 (2019); https://doi.org/10.1021/acs.est.9b01131
R.K. Langbehn, C. Michels and H.M. Soares, Environ. Pollut., 275, 116603 (2021); https://doi.org/10.1016/j.envpol.2021.116603
P. Darvishi, S.A. Mousavi, A. Mahmoudi and D. Nayeri, Environ. Sci.: Water Res. Technol., 9, 11 (2023); https://doi.org/10.1039/D1EW00912E
I.Y. Qudsieh, M.A. Ali and I.M. Maafa, Crystals, 15, 167 (2025); https://doi.org/10.3390/cryst15020167
H. Xu, W.J. Cooper, J. Jung and W. Song, Water Res., 45, 632 (2011); https://doi.org/10.1016/j.watres.2010.08.024
M. Saeed, M. Muneer, A.U. Haq and N. Akram, Environ. Sci. Pollut. Res. Int., 29, 293 (2022); https://doi.org/10.1007/s11356-021-16389-7
F.B. Li and X.Z. Li, Chemosphere, 48, 1103 (2002); https://doi.org/10.1016/S0045-6535(02)00201-1
R. Ghamarpoor, A. Fallah and M. Jamshidi, ACS Omega, 9, 25457 (2024); https://doi.org/10.1021/acsomega.3c08717
S.C. Yan, Z.S. Li and Z.G. Zou, Langmuir, 25, 10397 (2009); https://doi.org/10.1021/la900923z
M. Hamity, R.H. Lema, C.A. Suchetti and H.E. Gsponer, J. Photochem. Photobiol. Chem., 200, 445 (2008); https://doi.org/10.1016/j.jphotochem.2008.09.010
F. Soleimani and A. Nezamzadeh-Ejhieh, J. Mater. Res. Technol., 9, 16237 (2020); https://doi.org/10.1016/j.jmrt.2020.11.091
Z. Yu, B. Yin, F. Qu and X. Wu, Chem. Eng. J., 258, 203 (2014); https://doi.org/10.1016/j.cej.2014.07.041
Y. Song, J. Tian, S. Gao, P. Shao, J. Qi and F. Cui, Appl. Catal. B, 210, 88 (2017); https://doi.org/10.1016/j.apcatb.2017.03.059
S.C. Yan, Z.S. Li and Z.G. Zou, Langmuir, 26, 3894 (2010); https://doi.org/10.1021/la904023j
N. Pourshirband, A. Nezamzadeh-Ejhieh and S.N. Mirsattari, Spectrochim. Acta A Mol. Biomol. Spectrosc., 248, 119110 (2021); https://doi.org/10.1016/j.saa.2020.119110
B. Shao, X. Liu, Z. Liu, G. Zeng, W. Zhang, Q. Liang, Y. Liu, Q. He, X. Yuan, D. Wang, S. Luo and S. Gong, Chem. Eng. J., 374, 479 (2019); https://doi.org/10.1016/j.cej.2019.05.202
S. Shenoy, K. Tarafder and K. Sridharan, Physica B, 595, 412367 (2020); https://doi.org/10.1016/j.physb.2020.412367
J. Fang, K. Xie, Q. Kang and Y. Gou, J. Sci. Adv. Mater. Dev., 7, 100409 (2022); https://doi.org/10.1016/j.jsamd.2021.100409
S. Al Mamari, F.E. Suliman, Y. Kim and R. Selvaraj, Adv. Powder Technol., 34, 104026 (2023); https://doi.org/10.1016/j.apt.2023.104026
G. Liu, M. Liao, Z. Zhang, H. Wang, D. Chen and Y. Feng, Sep. Purif. Technol., 244, 116618 (2020); https://doi.org/10.1016/j.seppur.2020.116618
X. Sun, K. He, Z. Chen, H. Yuan, F. Guo and W. Shi, Sep. Purif. Technol., 324, 124600 (2023); https://doi.org/10.1016/j.seppur.2023.124600
K. Li, M. Chen, L. Chen, S. Zhao, W. Xue, Z. Han and Y. Han, Processes, 11, 528 (2023); https://doi.org/10.3390/pr11020528
S.S.A. Al-Razzaq and A.J. Ghazai, AIP Conf. Proc., 3303, 030002 (2025); https://doi.org/10.1063/5.0266765
J.H. Pereira, A.C. Reis, V. Homem, J.A. Silva, A. Alves, M.T. Borges, R.A.R. Boaventura, V.J.P. Vilar and O.C. Nunes, Water Res., 65, 307 (2014); https://doi.org/10.1016/j.watres.2014.07.037
D. Dimitrakopoulou, I. Rethemiotaki, N.P. Xekoukoulotakis, D. Venieri, Z. Frontistis and D. Mantzavinos, J. Environ. Manage., 98, 168 (2012); https://doi.org/10.1016/j.jenvman.2012.01.010
M. Qutob, F. Shakeel, P. Alam, S. Alshehri, M.M. Ghoneim and M. Rafatullah, Environ. Res., 214, 113833 (2022); https://doi.org/10.1016/j.envres.2022.113833
J. Wang, G. Wang, B. Cheng, J. Yu and J. Fan, Chin. J. Catal., 42, 56 (2021); https://doi.org/10.1016/S1872-2067(20)63634-8
M. Caux, F. Fina, J.T. Irvine, H. Idriss and R. Howe, Catal. Today, 287, 182 (2017); https://doi.org/10.1016/j.cattod.2016.11.007
K. Hemkumar, P. Ananthi and A. Pius, J. Mol. Liq., 425, 127274 (2025); https://doi.org/10.1016/j.molliq.2025.127274
S. Rani, A. Garg and N. Singh, Toxicol. Environ. Chem., 103, 137 (2021); https://doi.org/10.1080/02772248.2021.1931214
J. Wang, J. Feng and C. Wei, Appl. Surf. Sci., 609, 155324 (2023); https://doi.org/10.1016/j.apsusc.2022.155324
N. Maldonado-Carmona, G. Piccirillo, J. Godard, K. Heuzé, E. Genin, N. Villandier, M.J.F. Calvete and S. Leroy-Lhez, Photochem. Photobiol. Sci., 23, 587 (2024); https://doi.org/10.1007/s43630-024-00536-3
H.T.A. Alamir, R.R. Abass, O.H. Salah, M.M. Karim, S. Ahjel, S.J. Al-Shuwaili, W.D. Kadhim and R.A. Ahmed, Adv. J. Chem., 7A, 438 (2024); https://doi.org/10.48309/ajca.2024.449003.1501
Q. Li, H. Kong, P. Li, J. Shao and Y. He, J. Hazard. Mater., 373, 437 (2019); https://doi.org/10.1016/j.jhazmat.2019.03.066
M. Chaudhuri, M.Z.B.A. Wahap and A.C. Affam, Desalination Water Treat., 51, 7255 (2013); https://doi.org/10.1080/19443994.2013.773565
B.S. Silva and A.L. de Castro Peixoto, Braz. J. Chem. Eng., 41, 149 (2024); https://doi.org/10.1007/s43153-023-00364-5
D. Balarak, N. Mengelizadeh, P. Rajiv and K. Chandrika, Environ. Sci. Pollut. Res. Int., 28, 49743 (2021); https://doi.org/10.1007/s11356-021-13525-1
T.T. Nguyen, S.N. Nam, J. Son and J. Oh, Sci. Rep., 9, 9349 (2019); https://doi.org/10.1038/s41598-019-45644-8