Copyright (c) 2025 Bharat Bhushan, A. Jamal, M. S. H. Faizi, K.R. Sapkota

This work is licensed under a Creative Commons Attribution 4.0 International License.
Fluorescent Schiff Base Chemosensor for Selective Detection of Cu2+ Ions, DFT Analysis and Anti-Alzheimer Potential
Corresponding Author(s) : Bharat Bhushan
Asian Journal of Chemistry,
Vol. 37 No. 8 (2025): Vol 37 Issue 8, 2025
Abstract
In this work, a Schiff base chemosensor (6-hydroxy-N′-(pyren-1-ylmethylene)-2-naphthohydrazide) (HL) was synthesized, which can be used for the detection of Cu2+. This shows excellent selectivity towards Cu2+ ions at pH 7.4. The association constant (Ka) of the chemosensor for binding with Cu2+ was 1.16 × 104 M–1. Using the Benesi–Hildebrand relation, the stoichiometric ratio for complexation was found to be 1:1. The DFT method, the B3LYP functional and the 6-311++G(d,p) basis set were employed to calculate the frontier molecular orbital (FMO) analysis and molecular electrostatic potential (MEP). Based on the docking investigation, the Schiff base exhibits the anti-Alzheimer capability when docked with the receptors AChE and BChE with a binding affinity of -14.6 kcal/mol and -12.7 kcal/mol, respectively. Druglike nature, medicinal chemistry friendliness, and multiple toxicological were predicted using free SwissADME software.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S. Xia, S.-Y. Xiao, Q.-Q. Hong, J.-R. Zou, S. Yang, M.-X. Zhang and H. Zuo, RSC Adv, 5, 5244 (2015); https://doi.org/10.1039/C4RA14177F
- Y. Jeong and J. Yoon, Inorg. Chim. Acta, 381, 2 (2012); https://doi.org/10.1016/j.ica.2011.09.011
- S. Das, M. Dutta and D. Das, Anal. Methods, 5, 6262 (2013); https://doi.org/10.1039/c3ay40982a
- M. Formica, V. Fusi, L. Giorgi and M. Micheloni, Coord. Chem. Rev., 256, 170 (2012); https://doi.org/10.1016/j.ccr.2011.09.010
- A. Ghosh, A. Sengupta, A. Chattopadhyay and D. Das, RSC Adv., 5, 24194 (2015); https://doi.org/10.1039/C4RA16768F
- R. Joseph, B. Ramanujam, A. Acharya and C.P. Rao, Tetrahedron Lett., 50, 2735 (2009); https://doi.org/10.1016/j.tetlet.2009.03.109
- X. Xie, X. Chen, B. Li and L. Zhang, Dyes Pigm., 98, 422 (2013); https://doi.org/10.1016/j.dyepig.2013.03.022
- L. Zhang, Z. Wang, J. Hou, L. Lei, J. Li, J. Bai, H. Huang and Y. Li, Anal. Methods, 10, 2560 (2018); https://doi.org/10.1039/C8AY00614H
- Y.H. Hung, A.I. Bush and R.A. Cherny, J. Biol. Inorg. Chem., 15, 61 (2009); https://doi.org/10.1007/s00775-009-0600-y
- J.C. Lee, H.B. Gray and J.R. Winkler, J. Am. Chem. Soc., 130, 6898 (2008); https://doi.org/10.1021/ja711415b
- E. Madsen and J.D. Gitlin, Annu. Rev. Neurosci., 30, 317 (2007); https://doi.org/10.1146/annurev.neuro.30.051606.094232
- J.S. Valentine and P.J. Hart, Proc. Natl. Acad. Sci. USA, 100, 3617 (2003); https://doi.org/10.1073/pnas.0730423100
- B. Bansod, T. Kumar, R. Thakur, S. Rana and I. Singh, Biosens. Bioelectron., 94, 443 (2017); https://doi.org/10.1016/j.bios.2017.03.031
- B. Feier, D. Floner, C. Cristea, E. Bodoki, R. Sandulescu and F. Geneste, Talanta, 98, 152 (2012); https://doi.org/10.1016/j.talanta.2012.06.063
- T. Gong, J. Liu, X. Liu, J. Liu, J. Xiang and Y. Wu, Food Chem., 213, 306 (2016); https://doi.org/10.1016/j.foodchem.2016.06.091
- J. Liu, M. Yu, X.-C. Wang and Z. Zhang, Spectrochim. Acta A Mol. Biomol. Spectrosc., 93, 245 (2012); https://doi.org/10.1016/j.saa.2012.03.021
- X. Zhou, S. Lee, Z. Xu and J. Yoon, Chem. Rev., 115, 7944 (2015); https://doi.org/10.1021/cr500567r
- S. Yagi, S. Nakamura, D. Watanabe and H. Nakazumi, Dyes Pigm., 80, 98 (2009); https://doi.org/10.1016/j.dyepig.2008.05.012
- J.J. Lee, Y.W. Choi, G.R. You, S.Y. Lee and C. Kim, Dalton Trans., 44, 13305 (2015); https://doi.org/10.1039/C5DT00957J
- A. Chowdhury, P. Howlader and P.S. Mukherjee, Chem. Eur. J., 22, 1424 (2016); https://doi.org/10.1002/chem.201504003
- X. Yue, Z. Wang, C. Li and Z. Yang, Tetrahedron Lett., 58, 4532 (2017); https://doi.org/10.1016/j.tetlet.2017.10.044
- M. Sun, L. Du, H. Yu, K. Zhang, Y. Liu and S. Wang, Talanta, 162, 180 (2017); https://doi.org/10.1016/j.talanta.2016.10.012
- B.N. Giepmans, S.R. Adams, M.H. Ellisman and R.Y. Tsien, Science, 312, 217 (2006); https://doi.org/10.1126/science.1124618
- Z. Liu, H. Xu, S. Chen, L. Sheng, H. Zhang, F. Hao, P. Su and W. Wang, Spectrochim. Acta A Mol. Biomol. Spectrosc., 149, 83 (2015); https://doi.org/10.1016/j.saa.2015.04.030
- S. Comby, S.A. Tuck, L.K. Truman, O. Kotova and T. Gunnlaugsson, Inorg. Chem., 51, 10158 (2012); https://doi.org/10.1021/ic300697w
- A.B. Aletti, D.M. Gillen and T. Gunnlaugsson, Coord. Chem. Rev., 354, 98 (2018); https://doi.org/10.1016/j.ccr.2017.06.020
- T. Gunnlaugsson, B. Bichell and C. Nolan, Tetrahedron Lett., 43, 4989 (2002); https://doi.org/10.1016/S0040-4039(02)00895-X
- D. Wu, A.C. Sedgwick, T. Gunnlaugsson, E.U. Akkaya, J. Yoon and T.D. James, Chem. Soc. Rev., 46, 7105 (2017); https://doi.org/10.1039/C7CS00240H
- L. Tang, F. Li, M. Liu and R. Nandhakumar, Spectrochim. Acta A Mol. Biomol. Spectrosc., 78, 1168 (2011); https://doi.org/10.1016/j.saa.2010.12.072
- N. Narayanaswamy and T. Govindaraju, Sens. Actuators B Chem., 161, 304 (2012); https://doi.org/10.1016/j.snb.2011.10.036
- N. Shao, J.Y. Jin, H. Wang, Y. Zhang, R.H. Yang and W.H. Chan, Anal. Chem., 80, 3466 (2008); https://doi.org/10.1021/ac800072y
- H. Zhou, J. Wang, Y. Chen, W. Xi, Z. Zheng, D. Xu, Y. Cao, G. Liu, W. Zhu, J. Wu and Y. Tian, Dyes Pigm., 98, 1 (2013); https://doi.org/10.1016/j.dyepig.2013.01.018
- A. Jamal, H. Ferjani, M.S. Haque Faizi and A.Y. Abdullah Alzahrani, J. Indian Chem. Soc., 101, 101181 (2024); https://doi.org/10.1016/j.jics.2024.101181
- D. Tatlidil, M.A. Raza, N. Dege, A.A. Agar, U. Farwa and S.U. Rehman, ACS Omega, 7, 10568 (2022); https://doi.org/10.1021/acsomega.2c00102
- A. Jamal, M.S.H. Faizi and H. Ferjani, J. Mol. Struct., 1319, 139540 (2025); https://doi.org/10.1016/j.molstruc.2024.139540
- M.A. Raza and K. Fatima, J. Phys. Org. Chem., 33, e4076 (2020); https://doi.org/10.1002/poc.4076
- M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, R.L. Martin, V. Bakken, J.A. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, R. Cammi, C. Pomelli, J.W. Ochterski, A.J. Austin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, Ö. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski and D.J. Fox, Gaussian 09, Revision D.01 Gaussian, Inc., Wallingford CT (2013).
- O. Trott and A.J. Olson, J. Comput. Chem., 31, 455 (2010); https://doi.org/10.1002/jcc.21334
- Z.T. Yilmaz, H.Y. Odabasoglu, P. Senel, V. Adimcilar, T. Erdogan, A.D. Özdemir, A. Gölcü and M. Odabasoglu, J. Mol. Struct., 1205, 127585 (2020); https://doi.org/10.1016/j.molstruc.2019.127585
- T. Erdogan, J. Mol. Struct., 1242, 130733 (2021); https://doi.org/10.1016/j.molstruc.2021.130733
- S. Ahmed, I. Irshad, S. Nazir, S. Naz, M.A. Asghar, S.M. Alshehri, S. Bullo and M.L. Sanyang, Sci. Rep., 13, 39496 (2023); https://doi.org/10.1038/s41598-023-39496-6
- S. Murugavel, S. Sundramoorthy, D. Lakshmanan, R. Subashini and P. Pavan Kumar, J. Mol. Struct., 1131, 51 (2017); https://doi.org/10.1016/j.molstruc.2016.11.035
- A. Jamal, M.S.H. Faizi and N. Dege, J. Mol. Struct., 1300, 137251 (2024); https://doi.org/10.1016/j.molstruc.2023.137251
- N.M. O’Boyle, A.L. Tenderholt and K.M. Langner, J. Comput. Chem., 29, 839 (2008); https://doi.org/10.1002/jcc.20823
- M. Karabacak, L. Sinha, O. Prasad, A.M. Asiri and M. Cinar, Spectrochim. Acta A Mol. Biomol. Spectrosc., 115, 753 (2013); https://doi.org/10.1016/j.saa.2013.06.092
- M. Kurban, T.R. Sertbakan and I. Muz, Mater. Today Commun., 39, 108642 (2024); https://doi.org/10.1016/j.mtcomm.2024.108642
- M. Ríos-Gutiérrez, A. Saz Sousa and L.R. Domingo, J. Phys. Org. Chem., 36, e4503 (2023); https://doi.org/10.1002/poc.4503
- R.G. Parr, L.V. Szentpály and S. Liu, J. Am. Chem. Soc., 121, 1922 (1999); https://doi.org/10.1021/ja983494x
- J.-L. Stigliani, V. Bernardes-Génisson, J. Bernadou and G. Pratviel, Org. Biomol. Chem., 10, 6341 (2012); https://doi.org/10.1039/c2ob25602a
References
S. Xia, S.-Y. Xiao, Q.-Q. Hong, J.-R. Zou, S. Yang, M.-X. Zhang and H. Zuo, RSC Adv, 5, 5244 (2015); https://doi.org/10.1039/C4RA14177F
Y. Jeong and J. Yoon, Inorg. Chim. Acta, 381, 2 (2012); https://doi.org/10.1016/j.ica.2011.09.011
S. Das, M. Dutta and D. Das, Anal. Methods, 5, 6262 (2013); https://doi.org/10.1039/c3ay40982a
M. Formica, V. Fusi, L. Giorgi and M. Micheloni, Coord. Chem. Rev., 256, 170 (2012); https://doi.org/10.1016/j.ccr.2011.09.010
A. Ghosh, A. Sengupta, A. Chattopadhyay and D. Das, RSC Adv., 5, 24194 (2015); https://doi.org/10.1039/C4RA16768F
R. Joseph, B. Ramanujam, A. Acharya and C.P. Rao, Tetrahedron Lett., 50, 2735 (2009); https://doi.org/10.1016/j.tetlet.2009.03.109
X. Xie, X. Chen, B. Li and L. Zhang, Dyes Pigm., 98, 422 (2013); https://doi.org/10.1016/j.dyepig.2013.03.022
L. Zhang, Z. Wang, J. Hou, L. Lei, J. Li, J. Bai, H. Huang and Y. Li, Anal. Methods, 10, 2560 (2018); https://doi.org/10.1039/C8AY00614H
Y.H. Hung, A.I. Bush and R.A. Cherny, J. Biol. Inorg. Chem., 15, 61 (2009); https://doi.org/10.1007/s00775-009-0600-y
J.C. Lee, H.B. Gray and J.R. Winkler, J. Am. Chem. Soc., 130, 6898 (2008); https://doi.org/10.1021/ja711415b
E. Madsen and J.D. Gitlin, Annu. Rev. Neurosci., 30, 317 (2007); https://doi.org/10.1146/annurev.neuro.30.051606.094232
J.S. Valentine and P.J. Hart, Proc. Natl. Acad. Sci. USA, 100, 3617 (2003); https://doi.org/10.1073/pnas.0730423100
B. Bansod, T. Kumar, R. Thakur, S. Rana and I. Singh, Biosens. Bioelectron., 94, 443 (2017); https://doi.org/10.1016/j.bios.2017.03.031
B. Feier, D. Floner, C. Cristea, E. Bodoki, R. Sandulescu and F. Geneste, Talanta, 98, 152 (2012); https://doi.org/10.1016/j.talanta.2012.06.063
T. Gong, J. Liu, X. Liu, J. Liu, J. Xiang and Y. Wu, Food Chem., 213, 306 (2016); https://doi.org/10.1016/j.foodchem.2016.06.091
J. Liu, M. Yu, X.-C. Wang and Z. Zhang, Spectrochim. Acta A Mol. Biomol. Spectrosc., 93, 245 (2012); https://doi.org/10.1016/j.saa.2012.03.021
X. Zhou, S. Lee, Z. Xu and J. Yoon, Chem. Rev., 115, 7944 (2015); https://doi.org/10.1021/cr500567r
S. Yagi, S. Nakamura, D. Watanabe and H. Nakazumi, Dyes Pigm., 80, 98 (2009); https://doi.org/10.1016/j.dyepig.2008.05.012
J.J. Lee, Y.W. Choi, G.R. You, S.Y. Lee and C. Kim, Dalton Trans., 44, 13305 (2015); https://doi.org/10.1039/C5DT00957J
A. Chowdhury, P. Howlader and P.S. Mukherjee, Chem. Eur. J., 22, 1424 (2016); https://doi.org/10.1002/chem.201504003
X. Yue, Z. Wang, C. Li and Z. Yang, Tetrahedron Lett., 58, 4532 (2017); https://doi.org/10.1016/j.tetlet.2017.10.044
M. Sun, L. Du, H. Yu, K. Zhang, Y. Liu and S. Wang, Talanta, 162, 180 (2017); https://doi.org/10.1016/j.talanta.2016.10.012
B.N. Giepmans, S.R. Adams, M.H. Ellisman and R.Y. Tsien, Science, 312, 217 (2006); https://doi.org/10.1126/science.1124618
Z. Liu, H. Xu, S. Chen, L. Sheng, H. Zhang, F. Hao, P. Su and W. Wang, Spectrochim. Acta A Mol. Biomol. Spectrosc., 149, 83 (2015); https://doi.org/10.1016/j.saa.2015.04.030
S. Comby, S.A. Tuck, L.K. Truman, O. Kotova and T. Gunnlaugsson, Inorg. Chem., 51, 10158 (2012); https://doi.org/10.1021/ic300697w
A.B. Aletti, D.M. Gillen and T. Gunnlaugsson, Coord. Chem. Rev., 354, 98 (2018); https://doi.org/10.1016/j.ccr.2017.06.020
T. Gunnlaugsson, B. Bichell and C. Nolan, Tetrahedron Lett., 43, 4989 (2002); https://doi.org/10.1016/S0040-4039(02)00895-X
D. Wu, A.C. Sedgwick, T. Gunnlaugsson, E.U. Akkaya, J. Yoon and T.D. James, Chem. Soc. Rev., 46, 7105 (2017); https://doi.org/10.1039/C7CS00240H
L. Tang, F. Li, M. Liu and R. Nandhakumar, Spectrochim. Acta A Mol. Biomol. Spectrosc., 78, 1168 (2011); https://doi.org/10.1016/j.saa.2010.12.072
N. Narayanaswamy and T. Govindaraju, Sens. Actuators B Chem., 161, 304 (2012); https://doi.org/10.1016/j.snb.2011.10.036
N. Shao, J.Y. Jin, H. Wang, Y. Zhang, R.H. Yang and W.H. Chan, Anal. Chem., 80, 3466 (2008); https://doi.org/10.1021/ac800072y
H. Zhou, J. Wang, Y. Chen, W. Xi, Z. Zheng, D. Xu, Y. Cao, G. Liu, W. Zhu, J. Wu and Y. Tian, Dyes Pigm., 98, 1 (2013); https://doi.org/10.1016/j.dyepig.2013.01.018
A. Jamal, H. Ferjani, M.S. Haque Faizi and A.Y. Abdullah Alzahrani, J. Indian Chem. Soc., 101, 101181 (2024); https://doi.org/10.1016/j.jics.2024.101181
D. Tatlidil, M.A. Raza, N. Dege, A.A. Agar, U. Farwa and S.U. Rehman, ACS Omega, 7, 10568 (2022); https://doi.org/10.1021/acsomega.2c00102
A. Jamal, M.S.H. Faizi and H. Ferjani, J. Mol. Struct., 1319, 139540 (2025); https://doi.org/10.1016/j.molstruc.2024.139540
M.A. Raza and K. Fatima, J. Phys. Org. Chem., 33, e4076 (2020); https://doi.org/10.1002/poc.4076
M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, R.L. Martin, V. Bakken, J.A. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, R. Cammi, C. Pomelli, J.W. Ochterski, A.J. Austin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, Ö. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski and D.J. Fox, Gaussian 09, Revision D.01 Gaussian, Inc., Wallingford CT (2013).
O. Trott and A.J. Olson, J. Comput. Chem., 31, 455 (2010); https://doi.org/10.1002/jcc.21334
Z.T. Yilmaz, H.Y. Odabasoglu, P. Senel, V. Adimcilar, T. Erdogan, A.D. Özdemir, A. Gölcü and M. Odabasoglu, J. Mol. Struct., 1205, 127585 (2020); https://doi.org/10.1016/j.molstruc.2019.127585
T. Erdogan, J. Mol. Struct., 1242, 130733 (2021); https://doi.org/10.1016/j.molstruc.2021.130733
S. Ahmed, I. Irshad, S. Nazir, S. Naz, M.A. Asghar, S.M. Alshehri, S. Bullo and M.L. Sanyang, Sci. Rep., 13, 39496 (2023); https://doi.org/10.1038/s41598-023-39496-6
S. Murugavel, S. Sundramoorthy, D. Lakshmanan, R. Subashini and P. Pavan Kumar, J. Mol. Struct., 1131, 51 (2017); https://doi.org/10.1016/j.molstruc.2016.11.035
A. Jamal, M.S.H. Faizi and N. Dege, J. Mol. Struct., 1300, 137251 (2024); https://doi.org/10.1016/j.molstruc.2023.137251
N.M. O’Boyle, A.L. Tenderholt and K.M. Langner, J. Comput. Chem., 29, 839 (2008); https://doi.org/10.1002/jcc.20823
M. Karabacak, L. Sinha, O. Prasad, A.M. Asiri and M. Cinar, Spectrochim. Acta A Mol. Biomol. Spectrosc., 115, 753 (2013); https://doi.org/10.1016/j.saa.2013.06.092
M. Kurban, T.R. Sertbakan and I. Muz, Mater. Today Commun., 39, 108642 (2024); https://doi.org/10.1016/j.mtcomm.2024.108642
M. Ríos-Gutiérrez, A. Saz Sousa and L.R. Domingo, J. Phys. Org. Chem., 36, e4503 (2023); https://doi.org/10.1002/poc.4503
R.G. Parr, L.V. Szentpály and S. Liu, J. Am. Chem. Soc., 121, 1922 (1999); https://doi.org/10.1021/ja983494x
J.-L. Stigliani, V. Bernardes-Génisson, J. Bernadou and G. Pratviel, Org. Biomol. Chem., 10, 6341 (2012); https://doi.org/10.1039/c2ob25602a