Copyright (c) 2025 Aron rabi Physics

This work is licensed under a Creative Commons Attribution 4.0 International License.
Green Synthesis of Zinc Oxide Nanoparticles using Hibiscus rosa-sinensis Leaves Extract: Structural, Morphological, Bioactivity and Photocatalytic Properties
Corresponding Author(s) : S. Aron Rabi
Asian Journal of Chemistry,
Vol. 37 No. 8 (2025): Vol 37 Issue 8, 2025
Abstract
Zinc oxide nanoparticles (ZnO NPs) were synthesized using an eco-friendly green synthesis approach, with Hibiscus rosa-sinensis leaf extract serving as both a stabilizing and capping agent. The bioactive compounds present in the leaf extract facilitated the formation of ZnO nanoparticles by stabilizing the zinc salt precursor during the synthesis process. The resulting ZnO nanoparticles were coated with biomolecules from the H. rosa-sinensis extract, enhanced the biological activity. Comprehensive characterization of the synthesized ZnO nanoparticles was performed using a range of advanced techniques, including X-ray diffraction (XRD) to determine crystalline structure, Fourier transform infrared spectroscopy (FT-IR) to identify functional groups, UV-Vis spectroscopy to analyze the optical properties and electron microscopy (SEM and TEM) to examine their surface morphology and particle size. An 81.3% breakdown of acid black 1 (AB 1) dye was observed in sunlight, with the degradation rate escalating as the irradiation duration increased. The antimicrobial activity against Staphylococcus aureus and Bacillus subtilis show higher results compared to Escherichia coli and Salmonella typhimurium.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- B. Krishnakumar and M. Swaminathan, Spectrochim. Acta A Mol. Biomol. Spectrosc., 81, 739 (2011); https://doi.org/10.1016/j.saa.2011.07.019
- J. Zeng, H.W. Yang, Y.F. Tong, G.Y. Dong, D.X. Liu, C. Wen, Y. Ren, M. Chen, X.Y. Li, Z. Xu, Y. We and Q.Y. Dai, Opt. Mater., 154, 115766 (2024); https://doi.org/10.1016/j.optmat.2024.115766
- S. Ranjitha, S. Bhuvaneswari, C. Sudhakar and V. Aroulmoji, Chem. Phys. Impact, 9, 100735 (2024); https://doi.org/10.1016/j.chphi.2024.100735
- J.Y. Kim, P. Vincent, J. Jang, M.S. Jang, M. Choi, J.H. Bae, C. Lee and H. Kim, J. Alloys Compd., 813, 152202 (2020); https://doi.org/10.1016/j.jallcom.2019.152202
- M. Kamruzzaman, Nanoscale Adv., 2, 286 (2020); https://doi.org/10.1039/C9NA00523D
- A. Giedraitiene, M. Ružauskas, R. Šiugždiniene, S. Tuckute, K. Grigonis and D. Milcius, Nanomaterials, 14, 1264 (2024); https://doi.org/10.3390/nano14151264
- P. Monika, R.H. Krishna, Z. Hussain, K. Nandhini, S.J. Pandurangi, T. Malek and S. Girish Kumar, Biomater. Adv., 172, 214246 (2025); https://doi.org/10.1016/j.bioadv.2025.214246
- R.K. Pandey, J. Dutta, S. Brahma, B. Rao and C.-P. Liu, J. Phys. Mater., 4, 044011 (2021); https://doi.org/10.1088/2515-7639/ac130a
- N. Bhadwal, R.B. Mrad and K. Behdinan, Sensors, 23, 3859 (2023); https://doi.org/10.3390/s23083859
- A.L. Nikolaev, M.A. Kazmina, N.V. Lyanguzov, K.G. Abdulvakhidov, and E.M. Kaidashev, J. Adv. Dielectr., 12, 2160020 (2022); https://doi.org/10.1142/S2010135X21600201
- M. Bandeira, M. Giovanela, M. Roesch-Ely, D.M. Devine and J. da Silva Crespo, Sustain. Chem. Pharm., 15, 100223 (2020); https://doi.org/10.1016/j.scp.2020.100223
- S. Zeghoud, H. Hemmami, B.B. Seghir, I.B. Amor, I. Kouadri, A. Rebiai, M. Messaoudi, S. Ahmed, P. Pohl and J. Simal-Gandara, Mater. Today Commun., 33, 104747 (2022); https://doi.org/10.1016/j.mtcomm.2022.104747
- F.T.Z. Toma, M.S. Rahman and K.H. Maria, Discov. Mater., 5, 60 (2025); https://doi.org/10.1007/s43939-025-00201-1
- N. Rani, P. Singh, S. Kumar, P. Kumar, V. Bhankar and K. Kumar, Mater. Res. Bull., 163, 112233 (2023); https://doi.org/10.1016/j.materresbull.2023.112233
- C. Hano and B.H. Abbasi, Biomolecules, 12, 31 (2022); https://doi.org/10.3390/biom12010031
- H. Singh, N.F. Desimone, S. Pandya, S. Jasani, N. George, M. Adnan, A. Aldarhami, A.S. Bazaid and S.A. Alderhami, Int. J. Nanomedicine, 18, 4727 (2023); https://doi.org/10.2147/IJN.S419369
- H.Y. Chai, S.M. Lam and J.C. Sin, AIP Conf. Proc., 2157, 020042 (2019); https://doi.org/10.1063/1.5126577
- B. Krishnakumar, A. Alsalme, F.A. Alharthi, D. Mani, K. Anandan, P. Amutha and A.J.F.N. Sobral, Opt. Mater., 113, 110854 (2021); https://doi.org/10.1016/j.optmat.2021.110854
- A. Hosseingholian, J. Mol. Struct., 1279, 134 (2023); https://doi.org/10.1016/j.mtsust.2023.100500
- S.J.P. Begum, S. Pratibha, J.M. Rawat, D. Venugopal, P. Sahu, K.A. Qureshi and M. Jaremko, Pharmaceuticals, 15, 455 (2022); https://doi.org/10.3390/ph15040455
- S. Lenka and S.K. Badamali, J. Mol. Catal., 536, 112918 (2023); https://doi.org/10.1016/j.mcat.2023.112918
- I.S. Saputra, E. Nurfani, A.G. Fahmi, A.H. Saputro, D.O.B. Apriandanu, D. Annas and Y. Yulizar, Vacuum, 227, 113434 (2024); https://doi.org/10.1016/j.vacuum.2024.113434
- I.H. Alsohaimi, N.F. Alotaibi, A.M. Albarkani, Q. Chen, S.M.N. Moustafa, M.S. Alshammari and A.M. Nassar, Alex. Eng. J., 83, 113 (2023); https://doi.org/10.1016/j.aej.2023.10.037
- N. Yousefi, Y. Zahedi, A. Yousefi, G. Hosseinzadeh and M. Jekle, Int. J. Biol. Macromol., 265, 130849 (2024); https://doi.org/10.1016/j.ijbiomac.2024.130849
- A. Vijayakumar, R. Mohan and P. Jayaprakash, J. Indian Chem. Soc., 101, 101375 (2024); https://doi.org/10.1016/j.jics.2024.101375
- R.A. Alghamdi, M.H. Al-Zahrani, M.H. Al-Zahrani, L.R. Altarjami, W. Al Abdulmonem, N. Samir, A. Said, A.A. Shami, W.S. Mohamed and M. Ezzeldien, Front. Bioeng. Biotechnol., 11, 1283898 (2023); https://doi.org/10.3389/fbioe.2023.1283898
- K. Balu, S. Kaliyamoorthy, M. Durai, A. Aguiar, M.C.M. Sobral, I. Muthuvel, S. Kumaravel, B. Avula, A.J.F.N. Sobral and Y.H. Ahn, Inorg. Chem. Commun., 154, 110973 (2023); https://doi.org/10.1016/j.inoche.2023.110973.
- M.-R. Zamani-Meymian, N. Naderi and M. Zareshahi, Ceram. Int., 48, 34948 (2022); https://doi.org/10.1016/j.ceramint.2022.08.084
References
B. Krishnakumar and M. Swaminathan, Spectrochim. Acta A Mol. Biomol. Spectrosc., 81, 739 (2011); https://doi.org/10.1016/j.saa.2011.07.019
J. Zeng, H.W. Yang, Y.F. Tong, G.Y. Dong, D.X. Liu, C. Wen, Y. Ren, M. Chen, X.Y. Li, Z. Xu, Y. We and Q.Y. Dai, Opt. Mater., 154, 115766 (2024); https://doi.org/10.1016/j.optmat.2024.115766
S. Ranjitha, S. Bhuvaneswari, C. Sudhakar and V. Aroulmoji, Chem. Phys. Impact, 9, 100735 (2024); https://doi.org/10.1016/j.chphi.2024.100735
J.Y. Kim, P. Vincent, J. Jang, M.S. Jang, M. Choi, J.H. Bae, C. Lee and H. Kim, J. Alloys Compd., 813, 152202 (2020); https://doi.org/10.1016/j.jallcom.2019.152202
M. Kamruzzaman, Nanoscale Adv., 2, 286 (2020); https://doi.org/10.1039/C9NA00523D
A. Giedraitiene, M. Ružauskas, R. Šiugždiniene, S. Tuckute, K. Grigonis and D. Milcius, Nanomaterials, 14, 1264 (2024); https://doi.org/10.3390/nano14151264
P. Monika, R.H. Krishna, Z. Hussain, K. Nandhini, S.J. Pandurangi, T. Malek and S. Girish Kumar, Biomater. Adv., 172, 214246 (2025); https://doi.org/10.1016/j.bioadv.2025.214246
R.K. Pandey, J. Dutta, S. Brahma, B. Rao and C.-P. Liu, J. Phys. Mater., 4, 044011 (2021); https://doi.org/10.1088/2515-7639/ac130a
N. Bhadwal, R.B. Mrad and K. Behdinan, Sensors, 23, 3859 (2023); https://doi.org/10.3390/s23083859
A.L. Nikolaev, M.A. Kazmina, N.V. Lyanguzov, K.G. Abdulvakhidov, and E.M. Kaidashev, J. Adv. Dielectr., 12, 2160020 (2022); https://doi.org/10.1142/S2010135X21600201
M. Bandeira, M. Giovanela, M. Roesch-Ely, D.M. Devine and J. da Silva Crespo, Sustain. Chem. Pharm., 15, 100223 (2020); https://doi.org/10.1016/j.scp.2020.100223
S. Zeghoud, H. Hemmami, B.B. Seghir, I.B. Amor, I. Kouadri, A. Rebiai, M. Messaoudi, S. Ahmed, P. Pohl and J. Simal-Gandara, Mater. Today Commun., 33, 104747 (2022); https://doi.org/10.1016/j.mtcomm.2022.104747
F.T.Z. Toma, M.S. Rahman and K.H. Maria, Discov. Mater., 5, 60 (2025); https://doi.org/10.1007/s43939-025-00201-1
N. Rani, P. Singh, S. Kumar, P. Kumar, V. Bhankar and K. Kumar, Mater. Res. Bull., 163, 112233 (2023); https://doi.org/10.1016/j.materresbull.2023.112233
C. Hano and B.H. Abbasi, Biomolecules, 12, 31 (2022); https://doi.org/10.3390/biom12010031
H. Singh, N.F. Desimone, S. Pandya, S. Jasani, N. George, M. Adnan, A. Aldarhami, A.S. Bazaid and S.A. Alderhami, Int. J. Nanomedicine, 18, 4727 (2023); https://doi.org/10.2147/IJN.S419369
H.Y. Chai, S.M. Lam and J.C. Sin, AIP Conf. Proc., 2157, 020042 (2019); https://doi.org/10.1063/1.5126577
B. Krishnakumar, A. Alsalme, F.A. Alharthi, D. Mani, K. Anandan, P. Amutha and A.J.F.N. Sobral, Opt. Mater., 113, 110854 (2021); https://doi.org/10.1016/j.optmat.2021.110854
A. Hosseingholian, J. Mol. Struct., 1279, 134 (2023); https://doi.org/10.1016/j.mtsust.2023.100500
S.J.P. Begum, S. Pratibha, J.M. Rawat, D. Venugopal, P. Sahu, K.A. Qureshi and M. Jaremko, Pharmaceuticals, 15, 455 (2022); https://doi.org/10.3390/ph15040455
S. Lenka and S.K. Badamali, J. Mol. Catal., 536, 112918 (2023); https://doi.org/10.1016/j.mcat.2023.112918
I.S. Saputra, E. Nurfani, A.G. Fahmi, A.H. Saputro, D.O.B. Apriandanu, D. Annas and Y. Yulizar, Vacuum, 227, 113434 (2024); https://doi.org/10.1016/j.vacuum.2024.113434
I.H. Alsohaimi, N.F. Alotaibi, A.M. Albarkani, Q. Chen, S.M.N. Moustafa, M.S. Alshammari and A.M. Nassar, Alex. Eng. J., 83, 113 (2023); https://doi.org/10.1016/j.aej.2023.10.037
N. Yousefi, Y. Zahedi, A. Yousefi, G. Hosseinzadeh and M. Jekle, Int. J. Biol. Macromol., 265, 130849 (2024); https://doi.org/10.1016/j.ijbiomac.2024.130849
A. Vijayakumar, R. Mohan and P. Jayaprakash, J. Indian Chem. Soc., 101, 101375 (2024); https://doi.org/10.1016/j.jics.2024.101375
R.A. Alghamdi, M.H. Al-Zahrani, M.H. Al-Zahrani, L.R. Altarjami, W. Al Abdulmonem, N. Samir, A. Said, A.A. Shami, W.S. Mohamed and M. Ezzeldien, Front. Bioeng. Biotechnol., 11, 1283898 (2023); https://doi.org/10.3389/fbioe.2023.1283898
K. Balu, S. Kaliyamoorthy, M. Durai, A. Aguiar, M.C.M. Sobral, I. Muthuvel, S. Kumaravel, B. Avula, A.J.F.N. Sobral and Y.H. Ahn, Inorg. Chem. Commun., 154, 110973 (2023); https://doi.org/10.1016/j.inoche.2023.110973.
M.-R. Zamani-Meymian, N. Naderi and M. Zareshahi, Ceram. Int., 48, 34948 (2022); https://doi.org/10.1016/j.ceramint.2022.08.084