Copyright (c) 2025 Sudarshan S. Gawali Sudarshan S. Gawali

This work is licensed under a Creative Commons Attribution 4.0 International License.
Crystal Structure Analysis, Cationic and Magnetic Studies of Cobalt Ferrite Nanoparticles
Corresponding Author(s) : Sudarshan Gawali
Asian Journal of Chemistry,
Vol. 37 No. 8 (2025): Vol 37 Issue 8, 2025
Abstract
In present study, we focus on the synthesis of cobalt ferrite (CoFe2O4) magnetic nanoparticles via wet chemical sol-gel self-ignition method using black pepper (Piper nigrum) as a fuel. The X-ray diffraction (XRD) investigations verified the mono-phase evolution of the simple cubic FCC type spinel structure. The crystal structure parameters, such as lattice constant (a = 8.386 Å), lattice strain, microstrain, stacking fault, etc. are obtained from XRD data and making use of the Williamson-Hall (W-H) plot. The Debye-Scherrer’s formula estimated crystallite size to be approximately 22.53 nm. The results of cation distribution suggest that cobalt ferrite have spinel structure with inverse nature. FTIR spectrum shows the two prominent absorption bands within 400 to 600 cm–1 range. The morphological study shows the spherical nature of the particle with a grain size of 14 ± 2.01 nm. Raman spectra reveal the Raman modes, viz. (A1g + Eg + 3T2g). Enhancement in saturation magnetization and decrement in coercivity were observed through the M-H curve.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- A. Hao and X. Ning, Front. Mater., 8, 718869 (2021); https://doi.org/10.3389/fmats.2021.718869
- K.K. Kefeni, B.B. Mamba and T.A. Msagati, Sep. Purif. Technol., 188, 399 (2017); https://doi.org/10.1016/j.seppur.2017.07.015
- O. Dehghani Dastjerdi, H. Shokrollahi and S. Mirshekari, Inorg. Chem. Commun., 153, 110797 (2023); https://doi.org/10.1016/j.inoche.2023.110797
- A. Franco Jr. and F.C. e Silva, Appl. Phys. Lett., 96, 172505 (2010); https://doi.org/10.1063/1.3422478
- G.K. Bhargava, S. Bhardwaj, M. Singh and K.M. Batoo, Ferrites and Multiferroics: Fundamentals to Applications, Springer Nature (2021).
- P. Gómez, D. Elduque, C. Pina and C. Javierre, Materials, 11, 1789 (2018); https://doi.org/10.3390/ma11101789
- H. Jalili, B. Aslibeiki, A.G. Varzaneh V.A. Chernenko, Beilstein J. Nanotechnol., 10, 1348 (2019); https://doi.org/10.3762/bjnano.10.133
- A. Alhadhrami, M. Zeshan and H.M.T. Farid, J. Austral. Ceram. Soc., 60, 609 (2024); https://doi.org/10.1007/s41779-023-00982-9
- A.I. Borhan, D. Gherca, A.R. Iordan and M.N. Palamaru, Classification and Types of Ferrites, In: Ferrite Nanostructured Magnetic Materials, Woodhead Publishing Series in Electronic and Optical Materials, Chap. 2, pp. 17-34 (2023).
- V.G. Kostishin, I.M. Isaev and D.V. Salogub, Polymers, 16, 1003 (2024); https://doi.org/10.3390/polym16071003
- A. Manohar, V. Vijayakanth, S.V.P. Vattikuti and K.H. Kim, Mater. Chem. Phys., 286, 126117 (2022); https://doi.org/10.1016/j.matchemphys.2022.126117
- S.J. Salih and W.M. Mahmood, Heliyon, 9, e16601 (2023); https://doi.org/10.1016/j.heliyon.2023.e16601
- S. Sambhudevan, Chem. Pap., 75, 3697 (2021); https://doi.org/10.1007/s11696-021-01664-1
- B.S. Ram, A.K. Paul and S. Kulkarni, J. Magn. Magn. Mater., 537, 168210 (2021); https://doi.org/10.1016/j.jmmm.2021.168210
- V. Dyo, T. Ajmal, B. Allen, D. Jazani and I. Ivanov, J. Eng., 2013, 89 (2013); https://doi.org/10.1049/joe.2013.0126
- A. Šutka and K.A. Gross, Sens. Actuators B Chem., 222, 95 (2016); https://doi.org/10.1016/j.snb.2015.08.027
- S. Dubey, S. and A. Vedrtnam, Invertis J. Sci. Technol., 15, 14 (2022); https://doi.org/10.5958/2454-762X.2022.00003.8
- S. Kumar and R.R. Singh, in eds.: P. Sharma, G.K. Bhargava, S. Bhardwaj and I. Sharma, Ferrite Nanoparticles for Telecommunication Application, In: Engineered Ferrites and Their Applications, Springer Nature, Singapore, Chap. 6, pp. 95-112 (2023).
- R.S. Yadav, I. Kuøitka, J. Vilcakova, J. Havlica, J. Masilko, L. Kalina, J. Tkacz, V. Enev and M. Hajdúchová, J. Phys. Chem. Solids, 107, 150 (2017); https://doi.org/10.1016/j.jpcs.2017.04.004
- M.A. Rafiq, A. Javed, M.N. Rasul, M.A. Khan and A. Hussain, Ceram. Int., 46, 4976 (2020); https://doi.org/10.1016/j.ceramint.2019.10.237
- U. Ahmad, M. Afzia, F. Shah, B. Ismail, A. Rahim and R.A. Khan, Mater. Sci. Semicond. Process., 148, 106830 (2022); https://doi.org/10.1016/j.mssp.2022.106830
- T.N. Pham, T.Q. Huy and A.-T. Le, RSC Adv., 10, 31622 (2020); https://doi.org/10.1039/D0RA05133K
- T. Dippong, E.A. Levei and O. Cadar, Nanomaterials, 11, 1560 (2021); https://doi.org/10.3390/nano11061560
- S. Chaturvedi and P.N. Dave, Chem. Methodol., 3, 115 (2019); https://doi.org/10.22034/chemm.2018.143461.1069
- R. Singh, R. S. Gaur, and R. Kumar, J. Magn. Magn. Mater., 503, 166679 (2020); https://doi.org/10.1016/j.jmmm.2020.166679
- N. Abid, A.M. Khan, S. Shujait, K. Chaudhary, M. Ikram, M. Imran, J. Haider, M. Khan, Q. Khan and M. Maqbool, Adv. Colloid Interface Sci., 300, 102597 (2022); https://doi.org/10.1016/j.cis.2021.102597
- D. Wang, T. Xie and Y. Li, Nano Res., 2, 30 (2009); https://doi.org/10.1007/s12274-009-9007-x
- T. Pine, X. Lu, D.R. Mumm, G.S. Samuelsen and J. Brouwer, J. Am. Cerm. Soc., 90, 3735 (2007); https://doi.org/10.1111/j.1551-2916.2007.01919.x
- S. Ying, Z. Guan, P.C. Ofoegbu, P. Clubb, C. Rico, F. He and J. Hong, Environ. Technol. Innov., 26, 102336 (2022); https://doi.org/10.1016/j.eti.2022.102336
- M. Huston, M. DeBella, M. DiBella and A. Gupta, Nanomaterials, 11, 2130 (2021); https://doi.org/10.3390/nano11082130
- S. Jiao, X. Wang and X. Yu, in eds.: Y. Tang and W. Yao, Neutron Diffraction for Energy Storage Materials, In: Energy Storage Materials Characteri-zation: Determining Properties and Performance, Wiley, Chap. 11, 263 (2025).
- L. Caselli, L. Conti, I. De Santis and D. Berti, Adv. Colloid Interface Sci., 327, 103156 (2024); https://doi.org/10.1016/j.cis.2024.103156
- Y.I. Frantina, F. Fajaroh, Nazriati, Yahmin and Sumari, AIP Conf. Proc., 2330, 070003 (2021); https://doi.org/10.1063/5.0043377
- P.S. Patil, S. Bhagat, R. Kokate and K.M. Jadhav, AIP Conf. Proc., 3198, 020032 (2025); https://doi.org/10.1063/5.0248275
- P.S. Patil, Y.P. Ubale, S.S. Gawali, M.R. Pai and K.M. Jadhav, Ceram. Int., 50, 54155 (2024); https://doi.org/10.1016/j.ceramint.2024.10.272
- B. Boussaida, R. Masrour, Q.Y. Tamboli, S.M. Patange and K.R. Zakde, Phys. Scr., 99, 115971 (2024); https://doi.org/10.1088/1402-4896/ad8277
- P. Aghav, V.N. Dhage, M.L. Mane, D.R. Shengule, R.G. Dorik and K.M. Jadhav, Physica B, 406, 4350 (2011); https://doi.org/10.1016/j.physb.2011.08.066
- S.A. Jadhav, M.V. Khedkar, S.B. Somvanshi and K.M. Jadhav, Ceram. Int., 47, 28623 (2021); https://doi.org/10.1016/j.ceramint.2021.07.021
- K.K. Deshmukh, S.P. Nawale, K.A. Gurav, S. Bhagat, A.P. Keche and K.M. Jadhav, Ceram. Int., (2025); https://doi.org/10.1016/j.ceramint.2025.06.043
- S.Z.H. Hashmi, M. Khalid, G. Mustafa, M.G.B. Ashiq, M. Younas, A. Quddus, H.S.M. Abd-Rabboh, T. Alshahrani, K. Naz and M.M. Javid, Mater. Chem. Phys., 305, 127912 (2023); https://doi.org/10.1016/j.matchemphys.2023.127912
- J.P. Singh, J.Y. Park, V. Singh, S.H. Kim, W.C. Lim, H. Kumar, Y.H. Kim, S. Lee and K.H. Chae, RSC Adv., 10, 21259 (2020); https://doi.org/10.1039/D0RA01653E
- M. Shobana, G. Nandhini, S. Kavita, V. Suresh Kumar and T. Pazhanivel, Mater. Sci. Eng. B, 286, 116030 (2022); https://doi.org/10.1016/j.mseb.2022.116030
- B.D. Cullity, Elements of X-ray Diffraction, Addison-Wesley Publishing Company, Inc. (1957).
- K.V. Chandekar, M. Shkir and S. AlFaify, J. Mol. Struct., 1205, 127681 (2020); https://doi.org/10.1016/j.molstruc.2020.127681
- A. Yadav, P. Choudhary, P. Saxena, V.N. Rai and A. Mishra, J. Adv. Dielectr., 9, 1950014 (2019); https://doi.org/10.1142/S2010135X19500140
- S.B. Somvanshi, M.V. Khedkar, P.B. Kharat and K.M. Jadhav, Ceram. Int., 46, 8640 (2020); https://doi.org/10.1016/j.ceramint.2019.12.097
- Y.P. Ubale, P.S. Patil, S.S. Gawali, S.K. Modi, K.B. Modi and K.M. Jadhav, J. Supercond. Nov. Magn., 38, 93 (2025); https://doi.org/10.1007/s10948-025-06935-6
- Y.P. Ubale, P.S. Patil, S.S. Gawali, S.V. Rathod and K.M. Jadhav, Appl. Phys., A Mater. Sci. Process., 131, 237 (2025); https://doi.org/10.1007/s00339-025-08383-4
- H. Ghorbani, M. Eshraghi, A.A. Sabouri Dodaran, S. Protasowicki, P. Kameli, C. Johnson and D. Vashaee, Mater. Res. Bull., 147, 111642 (2022); https://doi.org/10.1016/j.materresbull.2021.111642
References
A. Hao and X. Ning, Front. Mater., 8, 718869 (2021); https://doi.org/10.3389/fmats.2021.718869
K.K. Kefeni, B.B. Mamba and T.A. Msagati, Sep. Purif. Technol., 188, 399 (2017); https://doi.org/10.1016/j.seppur.2017.07.015
O. Dehghani Dastjerdi, H. Shokrollahi and S. Mirshekari, Inorg. Chem. Commun., 153, 110797 (2023); https://doi.org/10.1016/j.inoche.2023.110797
A. Franco Jr. and F.C. e Silva, Appl. Phys. Lett., 96, 172505 (2010); https://doi.org/10.1063/1.3422478
G.K. Bhargava, S. Bhardwaj, M. Singh and K.M. Batoo, Ferrites and Multiferroics: Fundamentals to Applications, Springer Nature (2021).
P. Gómez, D. Elduque, C. Pina and C. Javierre, Materials, 11, 1789 (2018); https://doi.org/10.3390/ma11101789
H. Jalili, B. Aslibeiki, A.G. Varzaneh V.A. Chernenko, Beilstein J. Nanotechnol., 10, 1348 (2019); https://doi.org/10.3762/bjnano.10.133
A. Alhadhrami, M. Zeshan and H.M.T. Farid, J. Austral. Ceram. Soc., 60, 609 (2024); https://doi.org/10.1007/s41779-023-00982-9
A.I. Borhan, D. Gherca, A.R. Iordan and M.N. Palamaru, Classification and Types of Ferrites, In: Ferrite Nanostructured Magnetic Materials, Woodhead Publishing Series in Electronic and Optical Materials, Chap. 2, pp. 17-34 (2023).
V.G. Kostishin, I.M. Isaev and D.V. Salogub, Polymers, 16, 1003 (2024); https://doi.org/10.3390/polym16071003
A. Manohar, V. Vijayakanth, S.V.P. Vattikuti and K.H. Kim, Mater. Chem. Phys., 286, 126117 (2022); https://doi.org/10.1016/j.matchemphys.2022.126117
S.J. Salih and W.M. Mahmood, Heliyon, 9, e16601 (2023); https://doi.org/10.1016/j.heliyon.2023.e16601
S. Sambhudevan, Chem. Pap., 75, 3697 (2021); https://doi.org/10.1007/s11696-021-01664-1
B.S. Ram, A.K. Paul and S. Kulkarni, J. Magn. Magn. Mater., 537, 168210 (2021); https://doi.org/10.1016/j.jmmm.2021.168210
V. Dyo, T. Ajmal, B. Allen, D. Jazani and I. Ivanov, J. Eng., 2013, 89 (2013); https://doi.org/10.1049/joe.2013.0126
A. Šutka and K.A. Gross, Sens. Actuators B Chem., 222, 95 (2016); https://doi.org/10.1016/j.snb.2015.08.027
S. Dubey, S. and A. Vedrtnam, Invertis J. Sci. Technol., 15, 14 (2022); https://doi.org/10.5958/2454-762X.2022.00003.8
S. Kumar and R.R. Singh, in eds.: P. Sharma, G.K. Bhargava, S. Bhardwaj and I. Sharma, Ferrite Nanoparticles for Telecommunication Application, In: Engineered Ferrites and Their Applications, Springer Nature, Singapore, Chap. 6, pp. 95-112 (2023).
R.S. Yadav, I. Kuøitka, J. Vilcakova, J. Havlica, J. Masilko, L. Kalina, J. Tkacz, V. Enev and M. Hajdúchová, J. Phys. Chem. Solids, 107, 150 (2017); https://doi.org/10.1016/j.jpcs.2017.04.004
M.A. Rafiq, A. Javed, M.N. Rasul, M.A. Khan and A. Hussain, Ceram. Int., 46, 4976 (2020); https://doi.org/10.1016/j.ceramint.2019.10.237
U. Ahmad, M. Afzia, F. Shah, B. Ismail, A. Rahim and R.A. Khan, Mater. Sci. Semicond. Process., 148, 106830 (2022); https://doi.org/10.1016/j.mssp.2022.106830
T.N. Pham, T.Q. Huy and A.-T. Le, RSC Adv., 10, 31622 (2020); https://doi.org/10.1039/D0RA05133K
T. Dippong, E.A. Levei and O. Cadar, Nanomaterials, 11, 1560 (2021); https://doi.org/10.3390/nano11061560
S. Chaturvedi and P.N. Dave, Chem. Methodol., 3, 115 (2019); https://doi.org/10.22034/chemm.2018.143461.1069
R. Singh, R. S. Gaur, and R. Kumar, J. Magn. Magn. Mater., 503, 166679 (2020); https://doi.org/10.1016/j.jmmm.2020.166679
N. Abid, A.M. Khan, S. Shujait, K. Chaudhary, M. Ikram, M. Imran, J. Haider, M. Khan, Q. Khan and M. Maqbool, Adv. Colloid Interface Sci., 300, 102597 (2022); https://doi.org/10.1016/j.cis.2021.102597
D. Wang, T. Xie and Y. Li, Nano Res., 2, 30 (2009); https://doi.org/10.1007/s12274-009-9007-x
T. Pine, X. Lu, D.R. Mumm, G.S. Samuelsen and J. Brouwer, J. Am. Cerm. Soc., 90, 3735 (2007); https://doi.org/10.1111/j.1551-2916.2007.01919.x
S. Ying, Z. Guan, P.C. Ofoegbu, P. Clubb, C. Rico, F. He and J. Hong, Environ. Technol. Innov., 26, 102336 (2022); https://doi.org/10.1016/j.eti.2022.102336
M. Huston, M. DeBella, M. DiBella and A. Gupta, Nanomaterials, 11, 2130 (2021); https://doi.org/10.3390/nano11082130
S. Jiao, X. Wang and X. Yu, in eds.: Y. Tang and W. Yao, Neutron Diffraction for Energy Storage Materials, In: Energy Storage Materials Characteri-zation: Determining Properties and Performance, Wiley, Chap. 11, 263 (2025).
L. Caselli, L. Conti, I. De Santis and D. Berti, Adv. Colloid Interface Sci., 327, 103156 (2024); https://doi.org/10.1016/j.cis.2024.103156
Y.I. Frantina, F. Fajaroh, Nazriati, Yahmin and Sumari, AIP Conf. Proc., 2330, 070003 (2021); https://doi.org/10.1063/5.0043377
P.S. Patil, S. Bhagat, R. Kokate and K.M. Jadhav, AIP Conf. Proc., 3198, 020032 (2025); https://doi.org/10.1063/5.0248275
P.S. Patil, Y.P. Ubale, S.S. Gawali, M.R. Pai and K.M. Jadhav, Ceram. Int., 50, 54155 (2024); https://doi.org/10.1016/j.ceramint.2024.10.272
B. Boussaida, R. Masrour, Q.Y. Tamboli, S.M. Patange and K.R. Zakde, Phys. Scr., 99, 115971 (2024); https://doi.org/10.1088/1402-4896/ad8277
P. Aghav, V.N. Dhage, M.L. Mane, D.R. Shengule, R.G. Dorik and K.M. Jadhav, Physica B, 406, 4350 (2011); https://doi.org/10.1016/j.physb.2011.08.066
S.A. Jadhav, M.V. Khedkar, S.B. Somvanshi and K.M. Jadhav, Ceram. Int., 47, 28623 (2021); https://doi.org/10.1016/j.ceramint.2021.07.021
K.K. Deshmukh, S.P. Nawale, K.A. Gurav, S. Bhagat, A.P. Keche and K.M. Jadhav, Ceram. Int., (2025); https://doi.org/10.1016/j.ceramint.2025.06.043
S.Z.H. Hashmi, M. Khalid, G. Mustafa, M.G.B. Ashiq, M. Younas, A. Quddus, H.S.M. Abd-Rabboh, T. Alshahrani, K. Naz and M.M. Javid, Mater. Chem. Phys., 305, 127912 (2023); https://doi.org/10.1016/j.matchemphys.2023.127912
J.P. Singh, J.Y. Park, V. Singh, S.H. Kim, W.C. Lim, H. Kumar, Y.H. Kim, S. Lee and K.H. Chae, RSC Adv., 10, 21259 (2020); https://doi.org/10.1039/D0RA01653E
M. Shobana, G. Nandhini, S. Kavita, V. Suresh Kumar and T. Pazhanivel, Mater. Sci. Eng. B, 286, 116030 (2022); https://doi.org/10.1016/j.mseb.2022.116030
B.D. Cullity, Elements of X-ray Diffraction, Addison-Wesley Publishing Company, Inc. (1957).
K.V. Chandekar, M. Shkir and S. AlFaify, J. Mol. Struct., 1205, 127681 (2020); https://doi.org/10.1016/j.molstruc.2020.127681
A. Yadav, P. Choudhary, P. Saxena, V.N. Rai and A. Mishra, J. Adv. Dielectr., 9, 1950014 (2019); https://doi.org/10.1142/S2010135X19500140
S.B. Somvanshi, M.V. Khedkar, P.B. Kharat and K.M. Jadhav, Ceram. Int., 46, 8640 (2020); https://doi.org/10.1016/j.ceramint.2019.12.097
Y.P. Ubale, P.S. Patil, S.S. Gawali, S.K. Modi, K.B. Modi and K.M. Jadhav, J. Supercond. Nov. Magn., 38, 93 (2025); https://doi.org/10.1007/s10948-025-06935-6
Y.P. Ubale, P.S. Patil, S.S. Gawali, S.V. Rathod and K.M. Jadhav, Appl. Phys., A Mater. Sci. Process., 131, 237 (2025); https://doi.org/10.1007/s00339-025-08383-4
H. Ghorbani, M. Eshraghi, A.A. Sabouri Dodaran, S. Protasowicki, P. Kameli, C. Johnson and D. Vashaee, Mater. Res. Bull., 147, 111642 (2022); https://doi.org/10.1016/j.materresbull.2021.111642