Copyright (c) 2025 Divya Mutharasu, Rajakumar Sundaram , Dr Ayyasamy PM

This work is licensed under a Creative Commons Attribution 4.0 International License.
Biodegradation of Azo Dyes in Synthetic Medium and Textile Effluent using a Potent Bacterium Bacillus sp. TDS50 and its Extracellular Metabolites
Corresponding Author(s) : Ayyasamy Pudukkadu Munusamy
Asian Journal of Chemistry,
Vol. 37 No. 8 (2025): Vol 37 Issue 8, 2025
Abstract
Azo dyes in textile effluents, pose substantial environmental problems owing to their persistence, toxicity and potential to form harmful carcinogenic and mutagenic byproducts, like aromatic amines. This study aimed to evaluate the degradation of reactive red (RR) and reactive blue (RB) azo dyes by an indigenous bacterial strain (Bacillus sp. TDS50) isolated from textile industry effluent. The Bacillus sp. TDS50, showed the highest decolorization efficiency of 98.30% for RR and 98.02% for RB. The strain showed its significant decolorization of azo dyes using glucose as a carbon source, pH 7, temperature 35 ºC, dye concentration 100 mg/L and an inoculum size 1%. A laboratory scale bioreactor was used to decolourize the dyes under optimum conditions. An analytical study of the degraded product was performed using FTIR spectroscopy and gas chromatography-mass spectroscopy (GC-MS). Another major focus of this investigation was decolourization in an aqueous medium using bacterially produced extracellular metabolites, viz. bioflocculants (BF) and biosurfactants (BS). The results of the bacterial treatment followed by phytotoxicity indicated the non-toxic nature of the treated effluent compared to untreated effluents.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- X. Wang, F. Aulenta, S. Puig, A. Esteve-Núnez, Y. He, Y. Mu and K. Rabaey, Environ. Sci. Ecotechnol., 1, 100013 (2020); https://doi.org/10.1016/j.ese.2020.100013
- S. Benkhaya, S. M’rabet and A. El Harfi, Heliyon, 6, e03271 (2020); https://doi.org/10.1016/j.heliyon.2020.e03271
- D. Prato-Garcia, F.J. Cervantes and G. Buitrón, J. Hazard. Mater., 250-251, 462 (2013); https://doi.org/10.1016/j.jhazmat.2013.02.025
- R. Al-Tohamy, J. Sun, M.F. Fareed, E.R. Kenawy and S.S. Ali, Sci. Rep., 10, 12370 (2020); https://doi.org/10.1038/s41598-020-69304-4
- B. Lellis, C.Z. Fávaro-Polonio, J.A. Pamphile and J.C. Polonio, Biotechnol. Res. Innov, 3, 275 (2019); https://doi.org/10.1016/j.biori.2019.09.001
- A.C.R. Ngo and D. Tischler, Int. J. Environ. Res. Public Health, 19, 4740 (2022); https://doi.org/10.3390/ijerph19084740
- L.D. Ardila-Leal, R.A. Poutou-Piñales, A.M. Pedroza-Rodríguez and B.E. Quevedo-Hidalgo, Molecules, 26, 3813 (2021); https://doi.org/10.3390/molecules26133813
- E. Akceylan, M. Bahadir and M. Yýlmaz, J. Hazard. Mater., 162, 960 (2009); https://doi.org/10.1016/j.jhazmat.2008.05.127
- X. Meng, G. Liu, J. Zhou and Q.S. Fu, Bioresour. Technol., 151, 63 (2014); https://doi.org/10.1016/j.biortech.2013.09.131
- M. Solís, A. Solís, H.I. Pérez, N. Manjarrez and M. Flores, Process Biochem., 47, 1723 (2012); https://doi.org/10.1016/j.procbio.2012.08.014
- P.H. Tsilo, A.K. Basson, Z.G. Ntombela, T.S. Maliehe and V.R. Pullabhotla, Int. J. Environ. Res. Public Health, 19, 3148 (2022); https://doi.org/10.3390/ijerph19063148
- G.P. Sheng, H.Q. Yu and X.Y. Li, Biotechnol. Adv., 28, 882 (2010); https://doi.org/10.1016/j.biotechadv.2010.08.001
- J.C. Mata-Sandoval, J. Karns and A. Torrents, Environ. Sci. Technol., 34, 4923 (2000); https://doi.org/10.1021/es0011111
- S.Y. Chen, W.B. Lu, Y.H. Wei, W.M. Chen and J.S. Chang, Biotechnol. Prog., 23, 661 (2007); https://doi.org/10.1021/bp0700152
- I. Mnif and D. Ghribi, World J. Microbiol. Biotechnol., 31, 1001 (2015); https://doi.org/10.1007/s11274-015-1866-6
- C. Nikolova and T. Gutierrez, Front. Bioeng. Biotechnol., 9, 626639 (2021); https://doi.org/10.3389/fbioe.2021.626639
- S. Gaur, S. Gupta and A. Jain, Bioremediat. J., 25, 308 (2021); https://doi.org/10.1080/10889868.2020.1871316
- S. Bala Subramanian, S. Yan, R.D. Tyagi and R.Y. Surampalli, Water Res., 44, 2253 (2010); https://doi.org/10.1016/j.watres.2009.12.046
- S. Nor, A. Abdullah, A. Yuniarto, Z. Ibrahim, M.H.M. Nor and T. Hadibarata, Environ. Technol. Innov., 22, 101533 (2021); https://doi.org/10.1016/j.eti.2021.101533
- S. Cosa, A.M. Ugbenyen, L.V. Mabinya, K. Rumbold and A.I. Okoh, Environ. Technol., 34, 2671 (2013); https://doi.org/10.1080/09593330.2013.786104
- O. Li, C. Lu, A. Liu, L. Zhu, P.M. Wang, C.D. Qian, X.H. Jiang and X.C. Wu, Bioresour. Technol., 134, 87 (2013); https://doi.org/10.1016/j.biortech.2013.02.013
- H.M. Ibrahim, Egyp. J. Pet., 27, 21 (2018); https://doi.org/10.1016/j.ejpe.2016.12.005
- O.S. Obayori, M.O. Ilori, S.A. Adebusoye, G.O. Oyetibo, A.E. Omotayo and O.O. Amund, World J. Microbiol. Biotechnol., 25, 1615 (2009); https://doi.org/10.1007/s11274-009-0053-z
- R.D. Rufino, J.M. de Luna, G.M. de Campos Takaki and L.A. Sarubbo, Electron. J. Biotechnol., 17, 34 (2014); https://doi.org/10.1016/j.ejbt.2013.12.006
- MF. Chaplin, Carbohydrate analysis. (2006); https://doi.org/10.1002/3527600906.mcb.200300011
- O.H. Lowry, N.J. Rosebrough, A.L. Farr and R.J. Randall, J. Biol. Chem., 193, 265 (1951); https://doi.org/10.1016/S0021-9258(19)52451-6
- R. Seenivasagan, P. Ayyasamy, R. Kasimani, A. Karthika, S. Rajakumar, O.O. Babalola, in eds.: M. Prashanthi, R. Sundaram, A. Jeyaseelan and T. Kaliannan, Nitrate Removal from Ground Water Through Lab Scale Bioreactor using Dissimilatory Nitrate Reducer Bacillus weihenstephanensis (DS45), In: Bioremediation and Sustainable Technologies for Cleaner Environment. Environmental Science and Engineering, Springer, Cham. pp 79–94 (2017).
- V.V. Dawkar, U.U. Jadhav, S.U. Jadhav and S.P. Govindwar, J. Appl. Microbiol., 105, 14 (2008); https://doi.org/10.1111/j.1365-2672.2008.03738.x
- D.H. Bergey, Bergey’s Manual of Determinative Bacteriology, Williams & Wilkins Co.: Baltimore, USA (2000).
- P.K. Chukowry, A. Mudhoo and S.J. Santchurn, Environ. Chem. Lett., 15, 531 (2017); https://doi.org/10.1007/s10311-017-0627-1
- N. Bhatt, K.C. Patel, H. Keharia and D. Madamwar, J. Basic Microbiol., 45, 407 (2005); https://doi.org/10.1002/jobm.200410504
- H.A. Modi, G. Rajput and C. Ambasana, Bioresour. Technol., 101, 6580 (2010); https://doi.org/10.1016/j.biortech.2010.03.067
- X. Xiao, C.C. Xu, Y.M. Wu, P.J. Cai, W.W. Li, D.L. Du and H.Q. Yu, Bioresour. Technol., 110, 86 (2012); https://doi.org/10.1016/j.biortech.2012.01.099
- R.G. Saratale, G.D. Saratale, J.S. Chang and S.P. Govindwar, J. Taiwan Inst. Chem. Eng., 42, 138 (2011); https://doi.org/10.1016/j.jtice.2010.06.006
- C.I. Pearce, J.R. Lloyd, J.T. Guthrie, Dyes Pigm., 58, 179 (2003); https://doi.org/10.1016/S0143-7208(03)00064-0
- P.K. Wong and P.Y. Yuen, Water Res., 30, 1736 (1996); https://doi.org/10.1016/0043-1354(96)00067-X
- A.V. Bunti’c, M.D. Pavlovi’c, D.G. Antonovi’c, S.S. Šiler-Marinkoviæ and S.I. Dimitrijeviæ-Brankoviæ, J. Clean. Prod., 148, 347 (2017); https://doi.org/10.1016/j.jclepro.2017.01.164
- R. Kishor, D. Purchase, G.D. Saratale, R.G. Saratale, L.F.R. Ferreira, M. Bilal, R. Chandra and R.N. Bharagava, J. Environ. Chem. Eng., 9, 105012 (2021); https://doi.org/10.1016/j.jece.2020.105012
- P.G. Carrillo, C. Mardaraz, S.I. Pitta-Alvarez and A.M. Giulietti, World J. Microbiol. Biotechnol., 12, 82 (1996); https://doi.org/10.1007/BF00327807
- S.S. Balan, C.G. Kumar and S. Jayalakshmi, Process Biochem., 51, 2198 (2016); https://doi.org/10.1016/j.procbio.2016.09.009
- I.M.C. Morais, A.L. Cordeiro, G.S. Teixeira, V.S. Domingues, R.M.D. Nardi, A.S. Monteiro, R.J. Alves, E.P. Siqueira and V.L. Santos, Microb. Cell Fact., 16, 155 (2017); https://doi.org/10.1186/s12934-017-0769-7
- S. Deng, G. Yu and Y.P. Ting, Colloids Surf. B Biointerfaces, 44, 179 (2005); https://doi.org/10.1016/j.colsurfb.2005.06.011
- K. Okaiyeto, U.U. Nwodo, L.V. Mabinya, A.S. Okoli and A.I. Okoh, Int. J. Mol. Sci., 16, 12986 (2015); https://doi.org/10.3390/ijms160612986
- Y.J. Yin, Z.M. Tian, W. Tang, L. Li, L.Y. Song and S.P. McElmurry, Bioresour. Technol., 171, 336 (2014); https://doi.org/10.1016/j.biortech.2014.08.094
- V. Bisht and B. Lal, Front. Microbiol., 10, 1288 (2019); https://doi.org/10.3389/fmicb.2019.01288
- P. Parthipan, E. Preetham, L.L. Machuca, P.K. Rahman, K. Murugan and A. Rajasekar, Front. Microbiol., 8, 237675 (2017); https://doi.org/10.3389/fmicb.2017.00193
- V.V. Chandanshive, S.K. Kadam, R.V. Khandare, M.B. Kurade, B.H. Jeon, J.P. Jadhav and S.P. Govindwar, Chemosphere, 210, 968 (2018); https://doi.org/10.1016/j.chemosphere.2018.07.064
- I. Haq, A. Raj and Markandeya, Chemosphere, 196, 58 (2018); https://doi.org/10.1016/j.chemosphere.2017.12.153
- N. Garg, A. Garg and S. Mukherji, J. Environ. Manage., 263, 110383 (2020); https://doi.org/10.1016/j.jenvman.2020.110383
- P. Kaur, J.P. Kushwaha and V.K. Sangal, J. Hazard. Mater., 346, 242 (2018); https://doi.org/10.1016/j.jhazmat.2017.12.044
- M.B. Ceretta, Y. Vieira, E.A. Wolski, E.L. Foletto and S. Silvestri, J. Water Process Eng., 35, 101230 (2020); https://doi.org/10.1016/j.jwpe.2020.101230
- P.S. Patil, U.U. Shedbalkar, D.C. Kalyani and J.P. Jadhav, J. Ind. Microbiol. Biotechnol., 35, 1181 (2008); https://doi.org/10.1007/s10295-008-0398-6
References
X. Wang, F. Aulenta, S. Puig, A. Esteve-Núnez, Y. He, Y. Mu and K. Rabaey, Environ. Sci. Ecotechnol., 1, 100013 (2020); https://doi.org/10.1016/j.ese.2020.100013
S. Benkhaya, S. M’rabet and A. El Harfi, Heliyon, 6, e03271 (2020); https://doi.org/10.1016/j.heliyon.2020.e03271
D. Prato-Garcia, F.J. Cervantes and G. Buitrón, J. Hazard. Mater., 250-251, 462 (2013); https://doi.org/10.1016/j.jhazmat.2013.02.025
R. Al-Tohamy, J. Sun, M.F. Fareed, E.R. Kenawy and S.S. Ali, Sci. Rep., 10, 12370 (2020); https://doi.org/10.1038/s41598-020-69304-4
B. Lellis, C.Z. Fávaro-Polonio, J.A. Pamphile and J.C. Polonio, Biotechnol. Res. Innov, 3, 275 (2019); https://doi.org/10.1016/j.biori.2019.09.001
A.C.R. Ngo and D. Tischler, Int. J. Environ. Res. Public Health, 19, 4740 (2022); https://doi.org/10.3390/ijerph19084740
L.D. Ardila-Leal, R.A. Poutou-Piñales, A.M. Pedroza-Rodríguez and B.E. Quevedo-Hidalgo, Molecules, 26, 3813 (2021); https://doi.org/10.3390/molecules26133813
E. Akceylan, M. Bahadir and M. Yýlmaz, J. Hazard. Mater., 162, 960 (2009); https://doi.org/10.1016/j.jhazmat.2008.05.127
X. Meng, G. Liu, J. Zhou and Q.S. Fu, Bioresour. Technol., 151, 63 (2014); https://doi.org/10.1016/j.biortech.2013.09.131
M. Solís, A. Solís, H.I. Pérez, N. Manjarrez and M. Flores, Process Biochem., 47, 1723 (2012); https://doi.org/10.1016/j.procbio.2012.08.014
P.H. Tsilo, A.K. Basson, Z.G. Ntombela, T.S. Maliehe and V.R. Pullabhotla, Int. J. Environ. Res. Public Health, 19, 3148 (2022); https://doi.org/10.3390/ijerph19063148
G.P. Sheng, H.Q. Yu and X.Y. Li, Biotechnol. Adv., 28, 882 (2010); https://doi.org/10.1016/j.biotechadv.2010.08.001
J.C. Mata-Sandoval, J. Karns and A. Torrents, Environ. Sci. Technol., 34, 4923 (2000); https://doi.org/10.1021/es0011111
S.Y. Chen, W.B. Lu, Y.H. Wei, W.M. Chen and J.S. Chang, Biotechnol. Prog., 23, 661 (2007); https://doi.org/10.1021/bp0700152
I. Mnif and D. Ghribi, World J. Microbiol. Biotechnol., 31, 1001 (2015); https://doi.org/10.1007/s11274-015-1866-6
C. Nikolova and T. Gutierrez, Front. Bioeng. Biotechnol., 9, 626639 (2021); https://doi.org/10.3389/fbioe.2021.626639
S. Gaur, S. Gupta and A. Jain, Bioremediat. J., 25, 308 (2021); https://doi.org/10.1080/10889868.2020.1871316
S. Bala Subramanian, S. Yan, R.D. Tyagi and R.Y. Surampalli, Water Res., 44, 2253 (2010); https://doi.org/10.1016/j.watres.2009.12.046
S. Nor, A. Abdullah, A. Yuniarto, Z. Ibrahim, M.H.M. Nor and T. Hadibarata, Environ. Technol. Innov., 22, 101533 (2021); https://doi.org/10.1016/j.eti.2021.101533
S. Cosa, A.M. Ugbenyen, L.V. Mabinya, K. Rumbold and A.I. Okoh, Environ. Technol., 34, 2671 (2013); https://doi.org/10.1080/09593330.2013.786104
O. Li, C. Lu, A. Liu, L. Zhu, P.M. Wang, C.D. Qian, X.H. Jiang and X.C. Wu, Bioresour. Technol., 134, 87 (2013); https://doi.org/10.1016/j.biortech.2013.02.013
H.M. Ibrahim, Egyp. J. Pet., 27, 21 (2018); https://doi.org/10.1016/j.ejpe.2016.12.005
O.S. Obayori, M.O. Ilori, S.A. Adebusoye, G.O. Oyetibo, A.E. Omotayo and O.O. Amund, World J. Microbiol. Biotechnol., 25, 1615 (2009); https://doi.org/10.1007/s11274-009-0053-z
R.D. Rufino, J.M. de Luna, G.M. de Campos Takaki and L.A. Sarubbo, Electron. J. Biotechnol., 17, 34 (2014); https://doi.org/10.1016/j.ejbt.2013.12.006
MF. Chaplin, Carbohydrate analysis. (2006); https://doi.org/10.1002/3527600906.mcb.200300011
O.H. Lowry, N.J. Rosebrough, A.L. Farr and R.J. Randall, J. Biol. Chem., 193, 265 (1951); https://doi.org/10.1016/S0021-9258(19)52451-6
R. Seenivasagan, P. Ayyasamy, R. Kasimani, A. Karthika, S. Rajakumar, O.O. Babalola, in eds.: M. Prashanthi, R. Sundaram, A. Jeyaseelan and T. Kaliannan, Nitrate Removal from Ground Water Through Lab Scale Bioreactor using Dissimilatory Nitrate Reducer Bacillus weihenstephanensis (DS45), In: Bioremediation and Sustainable Technologies for Cleaner Environment. Environmental Science and Engineering, Springer, Cham. pp 79–94 (2017).
V.V. Dawkar, U.U. Jadhav, S.U. Jadhav and S.P. Govindwar, J. Appl. Microbiol., 105, 14 (2008); https://doi.org/10.1111/j.1365-2672.2008.03738.x
D.H. Bergey, Bergey’s Manual of Determinative Bacteriology, Williams & Wilkins Co.: Baltimore, USA (2000).
P.K. Chukowry, A. Mudhoo and S.J. Santchurn, Environ. Chem. Lett., 15, 531 (2017); https://doi.org/10.1007/s10311-017-0627-1
N. Bhatt, K.C. Patel, H. Keharia and D. Madamwar, J. Basic Microbiol., 45, 407 (2005); https://doi.org/10.1002/jobm.200410504
H.A. Modi, G. Rajput and C. Ambasana, Bioresour. Technol., 101, 6580 (2010); https://doi.org/10.1016/j.biortech.2010.03.067
X. Xiao, C.C. Xu, Y.M. Wu, P.J. Cai, W.W. Li, D.L. Du and H.Q. Yu, Bioresour. Technol., 110, 86 (2012); https://doi.org/10.1016/j.biortech.2012.01.099
R.G. Saratale, G.D. Saratale, J.S. Chang and S.P. Govindwar, J. Taiwan Inst. Chem. Eng., 42, 138 (2011); https://doi.org/10.1016/j.jtice.2010.06.006
C.I. Pearce, J.R. Lloyd, J.T. Guthrie, Dyes Pigm., 58, 179 (2003); https://doi.org/10.1016/S0143-7208(03)00064-0
P.K. Wong and P.Y. Yuen, Water Res., 30, 1736 (1996); https://doi.org/10.1016/0043-1354(96)00067-X
A.V. Bunti’c, M.D. Pavlovi’c, D.G. Antonovi’c, S.S. Šiler-Marinkoviæ and S.I. Dimitrijeviæ-Brankoviæ, J. Clean. Prod., 148, 347 (2017); https://doi.org/10.1016/j.jclepro.2017.01.164
R. Kishor, D. Purchase, G.D. Saratale, R.G. Saratale, L.F.R. Ferreira, M. Bilal, R. Chandra and R.N. Bharagava, J. Environ. Chem. Eng., 9, 105012 (2021); https://doi.org/10.1016/j.jece.2020.105012
P.G. Carrillo, C. Mardaraz, S.I. Pitta-Alvarez and A.M. Giulietti, World J. Microbiol. Biotechnol., 12, 82 (1996); https://doi.org/10.1007/BF00327807
S.S. Balan, C.G. Kumar and S. Jayalakshmi, Process Biochem., 51, 2198 (2016); https://doi.org/10.1016/j.procbio.2016.09.009
I.M.C. Morais, A.L. Cordeiro, G.S. Teixeira, V.S. Domingues, R.M.D. Nardi, A.S. Monteiro, R.J. Alves, E.P. Siqueira and V.L. Santos, Microb. Cell Fact., 16, 155 (2017); https://doi.org/10.1186/s12934-017-0769-7
S. Deng, G. Yu and Y.P. Ting, Colloids Surf. B Biointerfaces, 44, 179 (2005); https://doi.org/10.1016/j.colsurfb.2005.06.011
K. Okaiyeto, U.U. Nwodo, L.V. Mabinya, A.S. Okoli and A.I. Okoh, Int. J. Mol. Sci., 16, 12986 (2015); https://doi.org/10.3390/ijms160612986
Y.J. Yin, Z.M. Tian, W. Tang, L. Li, L.Y. Song and S.P. McElmurry, Bioresour. Technol., 171, 336 (2014); https://doi.org/10.1016/j.biortech.2014.08.094
V. Bisht and B. Lal, Front. Microbiol., 10, 1288 (2019); https://doi.org/10.3389/fmicb.2019.01288
P. Parthipan, E. Preetham, L.L. Machuca, P.K. Rahman, K. Murugan and A. Rajasekar, Front. Microbiol., 8, 237675 (2017); https://doi.org/10.3389/fmicb.2017.00193
V.V. Chandanshive, S.K. Kadam, R.V. Khandare, M.B. Kurade, B.H. Jeon, J.P. Jadhav and S.P. Govindwar, Chemosphere, 210, 968 (2018); https://doi.org/10.1016/j.chemosphere.2018.07.064
I. Haq, A. Raj and Markandeya, Chemosphere, 196, 58 (2018); https://doi.org/10.1016/j.chemosphere.2017.12.153
N. Garg, A. Garg and S. Mukherji, J. Environ. Manage., 263, 110383 (2020); https://doi.org/10.1016/j.jenvman.2020.110383
P. Kaur, J.P. Kushwaha and V.K. Sangal, J. Hazard. Mater., 346, 242 (2018); https://doi.org/10.1016/j.jhazmat.2017.12.044
M.B. Ceretta, Y. Vieira, E.A. Wolski, E.L. Foletto and S. Silvestri, J. Water Process Eng., 35, 101230 (2020); https://doi.org/10.1016/j.jwpe.2020.101230
P.S. Patil, U.U. Shedbalkar, D.C. Kalyani and J.P. Jadhav, J. Ind. Microbiol. Biotechnol., 35, 1181 (2008); https://doi.org/10.1007/s10295-008-0398-6