Copyright (c) 2025 Vaseem Akhtar, Dinesh Kulhary

This work is licensed under a Creative Commons Attribution 4.0 International License.
Physico-Chemical Characterization and Environmental Implications of Jarosite Waste from Zinc Hydrometallurgical Processing
Corresponding Author(s) : Dinesh Kulhary
Asian Journal of Chemistry,
Vol. 37 No. 8 (2025): Vol 37 Issue 8, 2025
Abstract
This study reports the physico-chemical properties and environmental implications of jarosite waste generated from the zinc hydrometallurgical processing. Jarosite waste samples from a major zinc processing facility were analyzed alongside soil samples from surrounding areas to assess the potential environmental impacts. Comprehensive characterization was performed using multiple analytical techniques including ICP-OES for major element analysis, ICP-MS for trace elements and heavy metals, FTIR spectroscopy, XRD and zeta potential measurements. Results revealed that the jarosite waste contains significantly increased concentrations of Fe2O3 (37.8-42.5%), SO3 (20.9-26.1%) and ZnO (6.1-7.7%), with concerning levels of heavy metals including Zn (52,084-59,979 mg/kg), Pb (5,938-8,612 mg/kg) and Cd (140-237 mg/kg). XRD analysis confirmed the predominance of jarosite minerals with secondary phases of iron oxides and quartz. FTIR spectroscopy identified the characteristic sulfate stretching vibrations (1080-1190 cm–1) and Fe-O bonds (510-630 cm–1). Zeta potential measurements demonstrated the highly acidic nature of jarosite waste with an isoelectric point at approximately pH 3.2, significantly lower than surrounding soils (pH 5.8). Statistical analysis revealed the strong positive correlations between heavy metal concentrations and sulfate content, suggesting co-precipitation mechanisms during jarosite formation. The extreme acidity (pH 2.6-3.3) and high electrical conductivity (3.57-4.58 mS/cm) of jarosite waste present substantial environmental risks through metal leaching and acid mine drainage. This study provides critical insights into jarosite waste characteristics that can inform improved waste management strategies, remediation approaches and potential resource recovery opportunities in zinc hydrometallurgical processing.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- V.S. Litvinenko, Nat. Resour. Res., 29, 1521 (2020); https://doi.org/10.1007/s11053-019-09568-4
- J. Peng, H. Liu, L. He, Z. Sun, Y. Peng, X. Huang and X. Yan, Sustainability, 15, 9472 (2023); https://doi.org/10.3390/su15129472
- K.M. Renaud, The Mineral Industry of India. Minerals Yearbook: Area Reports: International Review 2014 Asia and the Pacific, vol. 3 (2018).
- P. Kushwaha, M. Agarwal and A. Ghosh, Mater. Today Proc., 76, 201 (2023); https://doi.org/10.1016/j.matpr.2022.12.178
- L.G. Dyer, W.R. Richmond and P.D. Fawell, Hydrometallurgy, 119-120, 47 (2012); https://doi.org/10.1016/j.hydromet.2012.02.017
- M. Cruells and A. Roca, Metals, 12, 802 (2022); https://doi.org/10.3390/met12050802
- Z. Piervandi, A.K. Darban, S.M. Mousavi, V. Funari, M. Abdollahy, G. Asadollahfardi, E. Dinelli, R.D. Webster and M. Sillanpää, Chemosphere, 258, 127288 (2020); https://doi.org/10.1016/j.chemosphere.2020.127288
- L. Zhu, C. Lin, Y. Wu, W. Lu, Y. Liu, Y. Ma & A. Chen, Environ. Geol., 53, 1491 (2008); https://doi.org/10.1007/s00254-007-0758-y
- M. Zhu, Y. Wang, C. Zheng, Y. Luo, Y. Li, S. Tan, Z. Sun, Y. Ke, C. Peng and X. Min, J. Environ. Manag., 370, 122396 (2024); https://doi.org/10.1016/j.jenvman.2024.122396
- R. Pérez-López, A.M. Álvarez-Valero, J.M. Nieto, R. Sáez and J.X. Matos, Appl. Geochem., 23, 3452 (2008); https://doi.org/10.1016/j.apgeochem.2008.08.005
- A. Navarro, E. Cardellach, J.L. Mendoza, M. Corbella and L.M. Domènech, Appl. Geochem., 23, 895 (2008); https://doi.org/10.1016/j.apgeochem.2007.07.012
- F.M. Romero, M.A. Armienta and G. González-Hernández, Appl. Geochem., 22, 109 (2007); https://doi.org/10.1016/j.apgeochem.2006.07.017
- Annual Report 2022-2023; Hindustan Zinc Limited, Hindustan Zinc Limited, Udaipur, India (2023).
- H.E. Jamieson, S.R. Walker and M.B. Parsons, Appl. Geochem., 57, 85 (2015); https://doi.org/10.1016/j.apgeochem.2014.12.014
- G.A. Desborough, K.S. Smith, H.A. Lowers, G.A. Swayze, S.F. Diehl, J.M. Hammarstrom, R.W. Leinz and R.L. Driscoll, Geochim. Cosmochim. Acta, 74, 1041 (2010); https://doi.org/10.1016/j.gca.2009.11.006
- M. Kerolli-Mustafa, L. Curkovic, H. Fajkovic and S. Ronèevic, Croat. Chem. Acta, 88, 189 (2015); https://doi.org/10.5562/cca2554
- D. Paktunc and J.E. Dutrizac, Can. Mineral., 41, 905 (2003); https://doi.org/10.2113/gscanmin.41.4.905
- J. Majzlan, P. Drahota and M. Filippi, Rev. Mineral. Geochem., 79, 17 (2014); https://doi.org/10.2138/rmg.2014.79.2
- S.A. Welch, D. Kirste, A.G. Christy, F.R. Beavis and S.G. Beavis, Chem. Geol., 254, 73 (2008); https://doi.org/10.1016/j.chemgeo.2008.06.010
- Y. Wang, L. Jiao, C. Zhao, W. Dong, W. Gong and D. Dong, Sci. Rep., 15, 7678 (2025); https://doi.org/10.1038/s41598-025-90322-7
- L. Alakangas, E. Andersson and S. Mueller, Environ. Sci. Pollut. Res. Int., 20, 7907 (2013); https://doi.org/10.1007/s11356-013-1838-z
- E. Yilmaz, Gospodarka Surowcami Mineralnymi-Mineral Resources Management, 27, pp. 89-112 (2011).
- A. Qureshi, C. Maurice and B. Öhlander, J. Geochem. Explor., 160, 44 (2016); https://doi.org/10.1016/j.gexplo.2015.10.014
- X. Wang, H. Zhao, L. Chang, Z. Yu, Z., Xiao, S. Tang, C. Huang, J. Fan and S. Yang, ACS Omega, 7, 39169 (2022); https://doi.org/10.1021/acsomega.2c05067
- M. Kerolli-Mustafa, H. Fajkovic, S. Ronèevic and L. Curkovic, J. Geochem. Explor., 148, 161 (2015); https://doi.org/10.1016/j.gexplo.2014.09.001.
- A. Pappu, M. Saxena and S.R. Asolekar, Sci. Total Environ., 359, 232 (2006); https://doi.org/10.1016/j.scitotenv.2005.04.024
- F.A. Swartjes, M. Rutgers, J.P. Lijzen, P.J. Janssen, A. Wintersen, P.F. Otte, E. Brand and L. Posthuma, Sci. Total Environ., 427-428, 1 (2012); https://doi.org/10.1016/j.scitotenv.2012.02.078
- CEPA, National Guidelines and Standards Office, Quebec, Canada (2007).
- K.A. Hudson-Edwards, Mineral. Mag., 67, 205 (2003); https://doi.org/10.1180/0026461036720095
- J.E. Dutrizac, in eds.: R.G. Bautista, Hydrometallurgical Process Funda-mentals. NATO Conference Series, Springer, Boston, MA, USA (1980).
- P. Acero, C. Ayora, C. Torrentó and J.M. Nieto, Geochim. Cosmochim. Acta, 70, 4130 (2006); https://doi.org/10.1016/j.gca.2006.06.1367
- A. Pappu, M. Saxena and S.R. Asolekar, Build. Environ., 42, 2311 (2007); https://doi.org/10.1016/j.buildenv.2006.04.015
- Dinesh and A. Sharma, Ceram. Int., (2025); https://doi.org/10.1016/j.ceramint.2025.04.323
- A. Sharma, V.K. Rao, D.V. Kamboj, R. Gaur, M. Shaik and A.R. Shrivastava, New J. Chem., 40, 8334 (2016); https://doi.org/10.1039/C5NJ03460D
- Dinesh, Ceram. Int., 51, 23021 (2025); https://doi.org/10.1016/j.ceramint.2025.02.404
- D. Kulhary and N. Dhariwal, Mater. Sci. Eng. B, 321, 118552 (2025); https://doi.org/10.1016/j.mseb.2025.118552
References
V.S. Litvinenko, Nat. Resour. Res., 29, 1521 (2020); https://doi.org/10.1007/s11053-019-09568-4
J. Peng, H. Liu, L. He, Z. Sun, Y. Peng, X. Huang and X. Yan, Sustainability, 15, 9472 (2023); https://doi.org/10.3390/su15129472
K.M. Renaud, The Mineral Industry of India. Minerals Yearbook: Area Reports: International Review 2014 Asia and the Pacific, vol. 3 (2018).
P. Kushwaha, M. Agarwal and A. Ghosh, Mater. Today Proc., 76, 201 (2023); https://doi.org/10.1016/j.matpr.2022.12.178
L.G. Dyer, W.R. Richmond and P.D. Fawell, Hydrometallurgy, 119-120, 47 (2012); https://doi.org/10.1016/j.hydromet.2012.02.017
M. Cruells and A. Roca, Metals, 12, 802 (2022); https://doi.org/10.3390/met12050802
Z. Piervandi, A.K. Darban, S.M. Mousavi, V. Funari, M. Abdollahy, G. Asadollahfardi, E. Dinelli, R.D. Webster and M. Sillanpää, Chemosphere, 258, 127288 (2020); https://doi.org/10.1016/j.chemosphere.2020.127288
L. Zhu, C. Lin, Y. Wu, W. Lu, Y. Liu, Y. Ma & A. Chen, Environ. Geol., 53, 1491 (2008); https://doi.org/10.1007/s00254-007-0758-y
M. Zhu, Y. Wang, C. Zheng, Y. Luo, Y. Li, S. Tan, Z. Sun, Y. Ke, C. Peng and X. Min, J. Environ. Manag., 370, 122396 (2024); https://doi.org/10.1016/j.jenvman.2024.122396
R. Pérez-López, A.M. Álvarez-Valero, J.M. Nieto, R. Sáez and J.X. Matos, Appl. Geochem., 23, 3452 (2008); https://doi.org/10.1016/j.apgeochem.2008.08.005
A. Navarro, E. Cardellach, J.L. Mendoza, M. Corbella and L.M. Domènech, Appl. Geochem., 23, 895 (2008); https://doi.org/10.1016/j.apgeochem.2007.07.012
F.M. Romero, M.A. Armienta and G. González-Hernández, Appl. Geochem., 22, 109 (2007); https://doi.org/10.1016/j.apgeochem.2006.07.017
Annual Report 2022-2023; Hindustan Zinc Limited, Hindustan Zinc Limited, Udaipur, India (2023).
H.E. Jamieson, S.R. Walker and M.B. Parsons, Appl. Geochem., 57, 85 (2015); https://doi.org/10.1016/j.apgeochem.2014.12.014
G.A. Desborough, K.S. Smith, H.A. Lowers, G.A. Swayze, S.F. Diehl, J.M. Hammarstrom, R.W. Leinz and R.L. Driscoll, Geochim. Cosmochim. Acta, 74, 1041 (2010); https://doi.org/10.1016/j.gca.2009.11.006
M. Kerolli-Mustafa, L. Curkovic, H. Fajkovic and S. Ronèevic, Croat. Chem. Acta, 88, 189 (2015); https://doi.org/10.5562/cca2554
D. Paktunc and J.E. Dutrizac, Can. Mineral., 41, 905 (2003); https://doi.org/10.2113/gscanmin.41.4.905
J. Majzlan, P. Drahota and M. Filippi, Rev. Mineral. Geochem., 79, 17 (2014); https://doi.org/10.2138/rmg.2014.79.2
S.A. Welch, D. Kirste, A.G. Christy, F.R. Beavis and S.G. Beavis, Chem. Geol., 254, 73 (2008); https://doi.org/10.1016/j.chemgeo.2008.06.010
Y. Wang, L. Jiao, C. Zhao, W. Dong, W. Gong and D. Dong, Sci. Rep., 15, 7678 (2025); https://doi.org/10.1038/s41598-025-90322-7
L. Alakangas, E. Andersson and S. Mueller, Environ. Sci. Pollut. Res. Int., 20, 7907 (2013); https://doi.org/10.1007/s11356-013-1838-z
E. Yilmaz, Gospodarka Surowcami Mineralnymi-Mineral Resources Management, 27, pp. 89-112 (2011).
A. Qureshi, C. Maurice and B. Öhlander, J. Geochem. Explor., 160, 44 (2016); https://doi.org/10.1016/j.gexplo.2015.10.014
X. Wang, H. Zhao, L. Chang, Z. Yu, Z., Xiao, S. Tang, C. Huang, J. Fan and S. Yang, ACS Omega, 7, 39169 (2022); https://doi.org/10.1021/acsomega.2c05067
M. Kerolli-Mustafa, H. Fajkovic, S. Ronèevic and L. Curkovic, J. Geochem. Explor., 148, 161 (2015); https://doi.org/10.1016/j.gexplo.2014.09.001.
A. Pappu, M. Saxena and S.R. Asolekar, Sci. Total Environ., 359, 232 (2006); https://doi.org/10.1016/j.scitotenv.2005.04.024
F.A. Swartjes, M. Rutgers, J.P. Lijzen, P.J. Janssen, A. Wintersen, P.F. Otte, E. Brand and L. Posthuma, Sci. Total Environ., 427-428, 1 (2012); https://doi.org/10.1016/j.scitotenv.2012.02.078
CEPA, National Guidelines and Standards Office, Quebec, Canada (2007).
K.A. Hudson-Edwards, Mineral. Mag., 67, 205 (2003); https://doi.org/10.1180/0026461036720095
J.E. Dutrizac, in eds.: R.G. Bautista, Hydrometallurgical Process Funda-mentals. NATO Conference Series, Springer, Boston, MA, USA (1980).
P. Acero, C. Ayora, C. Torrentó and J.M. Nieto, Geochim. Cosmochim. Acta, 70, 4130 (2006); https://doi.org/10.1016/j.gca.2006.06.1367
A. Pappu, M. Saxena and S.R. Asolekar, Build. Environ., 42, 2311 (2007); https://doi.org/10.1016/j.buildenv.2006.04.015
Dinesh and A. Sharma, Ceram. Int., (2025); https://doi.org/10.1016/j.ceramint.2025.04.323
A. Sharma, V.K. Rao, D.V. Kamboj, R. Gaur, M. Shaik and A.R. Shrivastava, New J. Chem., 40, 8334 (2016); https://doi.org/10.1039/C5NJ03460D
Dinesh, Ceram. Int., 51, 23021 (2025); https://doi.org/10.1016/j.ceramint.2025.02.404
D. Kulhary and N. Dhariwal, Mater. Sci. Eng. B, 321, 118552 (2025); https://doi.org/10.1016/j.mseb.2025.118552