Copyright (c) 2025 Basavaraj Hungund, Gururaj Tennalli, Dhanashree Gachhi, Yallappa Shiralgi

This work is licensed under a Creative Commons Attribution 4.0 International License.
Green Synthesis of Chitosan from Aspergillus niger and Evaluation of Antioxidant Property and Cytotoxic Effects on Selected Cancer Cell Lines
Corresponding Author(s) : Basavaraj S. Hungund
Asian Journal of Chemistry,
Vol. 37 No. 8 (2025): Vol 37 Issue 8, 2025
Abstract
Chitin and chitosan, derived from fungal cell walls, possess significant biomedical importance due to their unique material properties. Chitin and chitosan were extracted from Aspergillus niger strains (BSH5 and BSH9) using a two-phase extraction method. The biopolymers were characterized by FTIR, X-ray diffraction (XRD), 1H NMR spectroscopy and scanning electron microscopy (SEM). The thermal stability of chitin and chitosan was studied using thermogravimetric/differential scanning calorimetry (TGA-DSC). Fourier transform infrared (FTIR) was used to analyze the functional groups and validate the composition of the materials. The broad absorption band corresponding to the hydrogen-bonded O-H absorption band overlapped with the N-H band. 1H NMR also confirmed the purity of the biopolymers. X-ray diffraction (XRD) patterns of chitin and chitosan show the semi-crystallinity, a potential layered crystalline structure and a similar pattern to the commercial polymers. TGA-DSC analyses demonstrated the thermal stabilities of chitin and chitosan. Structural morphology by scanning electron microscopy (SEM) revealed thick and rough surfaces indicating the presence of amorphous nature of the material. Antioxidant studies revealed the radical scavenging activity of 46.38% and 47.65% for strains BSH5 and BSH9, respectively. Chitosan from both the stains demonstrated significant cytotoxic effect against MCF7 cell line with IC50 values of 206.6 µg/mL and 244.7 µg/mL, respectively. The material characterization and biological attributes demonstrated potential biomedical applications of the prepared biopolymer chitosan.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- H.A. Said Al Hoqani, N. AL-Shaqsi, M.A. Hossain and M.A. Al Sibani, Carbohydr. Res., 49, 108001 (2020); https://doi.org/10.1016/j.carres.2020.108001
- T. Huq, A. Khan, D. Brown, N. Dhayagude, Z. He and Y. Ni, J. Bioresour. Bioprod., 7, 85 (2022); https://doi.org/10.1016/j.jobab.2022.01.002
- S. Islam, M.A.R. Bhuiyan and M.N. Islam, J. Polym. Environ., 25, 854 (2017); https://doi.org/10.1007/s10924-016-0865-5
- R. Priyadarshi and J. Rhim, Innov. Food Sci. Emerg. Technol., 62, 102346 (2020); https://doi.org/10.1016/j.ifset.2020.102346
- C. Klinger, S. Zóltowska-Aksamitowska, M. Wysokowski, M.V. Tsurkan, R. Galli, I. Petrenko, T. Machalowski, A. Ereskovsky, R. Martinovic, L. Muzychka, O.B. Smolii, N. Bechmann, V. Ivanenko, P.J. Schupp, T. Jesionowski, M. Giovine, Y. Joseph, S.R. Bornstein, A. Voronkina and H. Ehrlich, Mar. Drugs, 17, 131 (2019); https://doi.org/10.3390/md17020131
- P. Battampara, T. Nimisha Sathish, R. Reddy, V. Guna, G.S. Nagananda, N. Reddy, B.S. Ramesha, V.H. Maharaddi, A.P. Rao, H.N. Ravikumar, A. Biradar and P.G. Radhakrishna, Int. J. Biol. Macromol., 161, 1296 (2020); https://doi.org/10.1016/j.ijbiomac.2020.07.161
- R.-C. Chien, M.-T. Yen and J.-L. Mau, Carbohydr. Polym., 138, 259 (2016); https://doi.org/10.1016/j.carbpol.2015.11.061
- C.G. Otoni, H.M.C. Azeredo, B.D. Mattos, M. Beaumont, D.S. Correa and O.J. Rojas, Adv. Mater., 33, 2102520 (2021); https://doi.org/10.1002/adma.202102520
- S.A. White, P.R. Farina and I. Fulton, Appl. Environ. Microbiol., 38, 323 (1979); https://doi.org/10.1128/aem.38.2.323-328.1979
- G.L. Miller, Anal. Chem., 31, 426 (1959); https://doi.org/10.1021/ac60147a030
- A. Zamani, L. Edebo, B. Sjöström and M.J. Taherzadeh, Biomacromolecules, 8, 3786 (2007); https://doi.org/10.1021/bm700701w
- M.M. Abo Elsoud and E.M. El Kady, Bull. Natl. Res. Cent., 43, 59 (2019); https://doi.org/10.1186/s42269-019-0105-y
- J. Johney, S.R. Sri and R. Ragunathan, J. Pure Appl. Microbiol., 12, 1631 (2018); https://doi.org/10.22207/JPAM.12.3.70
- G. Torðut, F.C. Yazdýç and N. Gürler, Polym. Eng. Sci., 62, 2552 (2022); https://doi.org/10.1002/pen.26040
- P.O. Okolo, O.U. Akakuru, O.U. Osuoji and A. Jideonwo, Bayero J. Pure Appl. Sci., 6, 118 (2014); https://doi.org/10.4314/bajopas.v6i1.24
- J. Dutta, In eds.: K. Ramawat and J.M. Mérillon, Polysaccharides, Springer, Cham, p. 1029 (2015).
- C. Muzzarelli, O. Francescangeli, G. Tosi and R.A.A. Muzzarelli, Carbohydr. Polym., 56, 137 (2004); https://doi.org/10.1016/j.carbpol.2004.01.002
- D. L. Kaplan,Biopolymers from Renewable Resources, Springer Berlin, Heidelberg (1998).
- H.-W. Lee, Y.-S. Park, J.-W. Choi, S.-Y. Yi and W.-S. Shin, Biol. Pharm. Bull., 26, 1100 (2003); https://doi.org/10.1248/bpb.26.1100
- J.F. Mendes, R.T. Paschoalin, V.B. Carmona, A.R. Sena Neto, A.C.P. Marques, J.M. Marconcini, L.H.C. Mattoso, E.S. Medeiros and J.E. Oliveira, Carbohydr. Polym., 137, 452 (2016); https://doi.org/10.1016/j.carbpol.2015.10.093
- A.K. Gautam, R.K. Verma, S. Avasthi, Sushma, Y. Bohra, B. Devadatha, M. Niranjan and N. Suwannarach, J. Fungi, 8, 226 (2022); https://doi.org/10.3390/jof8030226
- J. Sambrook and D.W. Russell, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor, N.Y: Cold Spring Harbor Laboratory Press, edn .4 (2001).
- M.R. Kasaai, Carbohydr. Polym., 79, 801 (2010); https://doi.org/10.1016/j.carbpol.2009.10.051
- D.B. Gachhi and B.S. Hungund, J. Appl. Pharm. Sci., 8, 116 (2018); https://doi.org/10.7324/JAPS.2018.81117
- G. Cárdenas, G. Cabrera, E. Taboada and S.P. Miranda, J. Appl. Polym. Sci., 93, 1876 (2004); https://doi.org/10.1002/app.20647
- M.-K. Jang, B.-G. Kong, Y.-I. Jeong, C.H. Lee and J.-W. Nah, J. Polym. Sci. A Polym. Chem., 42, 3423 (2004); https://doi.org/10.1002/pola.20176
- M. Muthu, J. Gopal, S. Chun, A.J.P. Devadoss, N. Hasan and I. Sivanesan, Antioxidants, 10, 228 (2021); https://doi.org/10.3390/antiox10020228
- E.I. Hassanen, E.A. Morsy, A.M. Hussien, K.Y. Farroh and M.E. Ali, Biosci. Rep., 41, 1 (2021); https://doi.org/10.1042/BSR20204091
- R.L. Lavall, O.B.G. Assis and S.P. Campana-Filho, Bioresour. Technol., 98, 2465 (2007); https://doi.org/10.1016/j.biortech.2006.09.002
- N. Subhapradha, P. Ramasamy, V. Shanmugam, P. Madeswaran, A. Srinivasan and A. Shanmugam, Food Chem., 141, 907 (2013); https://doi.org/10.1016/j.foodchem.2013.03.098
- B. Moussian, Adv. Exp. Med. Biol., 1142, 5 (2019); https://doi.org/10.1007/978-981-13-7318-3_2
- W. Sajomsang, S. Tantayanon, V. Tangpasuthadol, M. Thatte and W.H. Daly, Int. J. Biol. Macromol., 43, 79 (2008); https://doi.org/10.1016/j.ijbiomac.2008.03.010
- K.D. Rane and D.G. Hoover, Food Biotechnol., 7, 11 (1993); https://doi.org/10.1080/08905439309549843
- R. Varma and S. Vasudevan, ACS Omega, 5, 20224 (2020); https://doi.org/10.1021/acsomega.0c01903
- S. Kumari and R. Kishor, in eds.: S. Gopi, S. Thomas and A. Pius, Chitin and Chitosan: Origin, Properties, and Applications, In: Handbook of Chitin and Chitosan, Elsevier, Chap. 1, pp. 1-33 (2020).
- G.S. Dhillon, S. Kaur, S.K. Brar and M. Verma, Crit. Rev. Biotechnol., 33, 379 (2013); https://doi.org/10.3109/07388551.2012.717217
- S. Singh, K.K. Gaikwad and Y.S. Lee, J. Korea Soc. Packaging Sci. Tech., 24, 167 (2018); https://doi.org/10.20909/kopast.2018.24.3.167
- M.K. Lagat, S. Were, F. Ndwigah, V.J. Kemboi, C. Kipkoech and C.M. Tanga, Microorganisms, 9, 2417 (2021); https://doi.org/10.3390/microorganisms9122417
- N.H. Marei, E.A. El-Samie, T. Salah, G.R. Saad and A.H.M. Elwahy, Int. J. Biol. Macromol., 82, 871 (2016); https://doi.org/10.1016/j.ijbiomac.2015.10.024
- F.A.A. Sagheer, M.A. Al-Sughayer, S. Muslim and M.Z. Elsabee, Carbohydr. Polym., 77, 410 (2009); https://doi.org/10.1016/j.carbpol.2009.01.032
- N. Sankararamakrishnan and R. Sanghi, Carbohydr. Polym., 66, 160 (2006); https://doi.org/10.1016/j.carbpol.2006.02.035
- F.M. Almutairi, H.A. El Rabey, A.A. Tayel, A.I. Alalawy, M.A. Al-Duais, M.I. Sakran and N.S. Zidan, Int. J. Biol. Macromol., 155, 861 (2020); https://doi.org/10.1016/j.ijbiomac.2019.11.207
- J.K. Park, M.J. Chung, H.N. Choi and Y.I. Park, Int. J. Mol. Sci., 12, 266 (2011); https://doi.org/10.3390/ijms12010266
- Y. S. Wimardhani, D. F. Suniarti, H. J. Freisleben, S.I. Wanandi, N. C. Siregar and M.-A. Ikeda, J. Oral Sci., 56, 119 (2014); https://doi.org/10.2334/josnusd.56.119
- H.S. Adhikari and P.N. Yadav, Int. J. Biomater., 2018, 2952085 (2018); https://doi.org/10.1155/2018/2952085
References
H.A. Said Al Hoqani, N. AL-Shaqsi, M.A. Hossain and M.A. Al Sibani, Carbohydr. Res., 49, 108001 (2020); https://doi.org/10.1016/j.carres.2020.108001
T. Huq, A. Khan, D. Brown, N. Dhayagude, Z. He and Y. Ni, J. Bioresour. Bioprod., 7, 85 (2022); https://doi.org/10.1016/j.jobab.2022.01.002
S. Islam, M.A.R. Bhuiyan and M.N. Islam, J. Polym. Environ., 25, 854 (2017); https://doi.org/10.1007/s10924-016-0865-5
R. Priyadarshi and J. Rhim, Innov. Food Sci. Emerg. Technol., 62, 102346 (2020); https://doi.org/10.1016/j.ifset.2020.102346
C. Klinger, S. Zóltowska-Aksamitowska, M. Wysokowski, M.V. Tsurkan, R. Galli, I. Petrenko, T. Machalowski, A. Ereskovsky, R. Martinovic, L. Muzychka, O.B. Smolii, N. Bechmann, V. Ivanenko, P.J. Schupp, T. Jesionowski, M. Giovine, Y. Joseph, S.R. Bornstein, A. Voronkina and H. Ehrlich, Mar. Drugs, 17, 131 (2019); https://doi.org/10.3390/md17020131
P. Battampara, T. Nimisha Sathish, R. Reddy, V. Guna, G.S. Nagananda, N. Reddy, B.S. Ramesha, V.H. Maharaddi, A.P. Rao, H.N. Ravikumar, A. Biradar and P.G. Radhakrishna, Int. J. Biol. Macromol., 161, 1296 (2020); https://doi.org/10.1016/j.ijbiomac.2020.07.161
R.-C. Chien, M.-T. Yen and J.-L. Mau, Carbohydr. Polym., 138, 259 (2016); https://doi.org/10.1016/j.carbpol.2015.11.061
C.G. Otoni, H.M.C. Azeredo, B.D. Mattos, M. Beaumont, D.S. Correa and O.J. Rojas, Adv. Mater., 33, 2102520 (2021); https://doi.org/10.1002/adma.202102520
S.A. White, P.R. Farina and I. Fulton, Appl. Environ. Microbiol., 38, 323 (1979); https://doi.org/10.1128/aem.38.2.323-328.1979
G.L. Miller, Anal. Chem., 31, 426 (1959); https://doi.org/10.1021/ac60147a030
A. Zamani, L. Edebo, B. Sjöström and M.J. Taherzadeh, Biomacromolecules, 8, 3786 (2007); https://doi.org/10.1021/bm700701w
M.M. Abo Elsoud and E.M. El Kady, Bull. Natl. Res. Cent., 43, 59 (2019); https://doi.org/10.1186/s42269-019-0105-y
J. Johney, S.R. Sri and R. Ragunathan, J. Pure Appl. Microbiol., 12, 1631 (2018); https://doi.org/10.22207/JPAM.12.3.70
G. Torðut, F.C. Yazdýç and N. Gürler, Polym. Eng. Sci., 62, 2552 (2022); https://doi.org/10.1002/pen.26040
P.O. Okolo, O.U. Akakuru, O.U. Osuoji and A. Jideonwo, Bayero J. Pure Appl. Sci., 6, 118 (2014); https://doi.org/10.4314/bajopas.v6i1.24
J. Dutta, In eds.: K. Ramawat and J.M. Mérillon, Polysaccharides, Springer, Cham, p. 1029 (2015).
C. Muzzarelli, O. Francescangeli, G. Tosi and R.A.A. Muzzarelli, Carbohydr. Polym., 56, 137 (2004); https://doi.org/10.1016/j.carbpol.2004.01.002
D. L. Kaplan,Biopolymers from Renewable Resources, Springer Berlin, Heidelberg (1998).
H.-W. Lee, Y.-S. Park, J.-W. Choi, S.-Y. Yi and W.-S. Shin, Biol. Pharm. Bull., 26, 1100 (2003); https://doi.org/10.1248/bpb.26.1100
J.F. Mendes, R.T. Paschoalin, V.B. Carmona, A.R. Sena Neto, A.C.P. Marques, J.M. Marconcini, L.H.C. Mattoso, E.S. Medeiros and J.E. Oliveira, Carbohydr. Polym., 137, 452 (2016); https://doi.org/10.1016/j.carbpol.2015.10.093
A.K. Gautam, R.K. Verma, S. Avasthi, Sushma, Y. Bohra, B. Devadatha, M. Niranjan and N. Suwannarach, J. Fungi, 8, 226 (2022); https://doi.org/10.3390/jof8030226
J. Sambrook and D.W. Russell, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor, N.Y: Cold Spring Harbor Laboratory Press, edn .4 (2001).
M.R. Kasaai, Carbohydr. Polym., 79, 801 (2010); https://doi.org/10.1016/j.carbpol.2009.10.051
D.B. Gachhi and B.S. Hungund, J. Appl. Pharm. Sci., 8, 116 (2018); https://doi.org/10.7324/JAPS.2018.81117
G. Cárdenas, G. Cabrera, E. Taboada and S.P. Miranda, J. Appl. Polym. Sci., 93, 1876 (2004); https://doi.org/10.1002/app.20647
M.-K. Jang, B.-G. Kong, Y.-I. Jeong, C.H. Lee and J.-W. Nah, J. Polym. Sci. A Polym. Chem., 42, 3423 (2004); https://doi.org/10.1002/pola.20176
M. Muthu, J. Gopal, S. Chun, A.J.P. Devadoss, N. Hasan and I. Sivanesan, Antioxidants, 10, 228 (2021); https://doi.org/10.3390/antiox10020228
E.I. Hassanen, E.A. Morsy, A.M. Hussien, K.Y. Farroh and M.E. Ali, Biosci. Rep., 41, 1 (2021); https://doi.org/10.1042/BSR20204091
R.L. Lavall, O.B.G. Assis and S.P. Campana-Filho, Bioresour. Technol., 98, 2465 (2007); https://doi.org/10.1016/j.biortech.2006.09.002
N. Subhapradha, P. Ramasamy, V. Shanmugam, P. Madeswaran, A. Srinivasan and A. Shanmugam, Food Chem., 141, 907 (2013); https://doi.org/10.1016/j.foodchem.2013.03.098
B. Moussian, Adv. Exp. Med. Biol., 1142, 5 (2019); https://doi.org/10.1007/978-981-13-7318-3_2
W. Sajomsang, S. Tantayanon, V. Tangpasuthadol, M. Thatte and W.H. Daly, Int. J. Biol. Macromol., 43, 79 (2008); https://doi.org/10.1016/j.ijbiomac.2008.03.010
K.D. Rane and D.G. Hoover, Food Biotechnol., 7, 11 (1993); https://doi.org/10.1080/08905439309549843
R. Varma and S. Vasudevan, ACS Omega, 5, 20224 (2020); https://doi.org/10.1021/acsomega.0c01903
S. Kumari and R. Kishor, in eds.: S. Gopi, S. Thomas and A. Pius, Chitin and Chitosan: Origin, Properties, and Applications, In: Handbook of Chitin and Chitosan, Elsevier, Chap. 1, pp. 1-33 (2020).
G.S. Dhillon, S. Kaur, S.K. Brar and M. Verma, Crit. Rev. Biotechnol., 33, 379 (2013); https://doi.org/10.3109/07388551.2012.717217
S. Singh, K.K. Gaikwad and Y.S. Lee, J. Korea Soc. Packaging Sci. Tech., 24, 167 (2018); https://doi.org/10.20909/kopast.2018.24.3.167
M.K. Lagat, S. Were, F. Ndwigah, V.J. Kemboi, C. Kipkoech and C.M. Tanga, Microorganisms, 9, 2417 (2021); https://doi.org/10.3390/microorganisms9122417
N.H. Marei, E.A. El-Samie, T. Salah, G.R. Saad and A.H.M. Elwahy, Int. J. Biol. Macromol., 82, 871 (2016); https://doi.org/10.1016/j.ijbiomac.2015.10.024
F.A.A. Sagheer, M.A. Al-Sughayer, S. Muslim and M.Z. Elsabee, Carbohydr. Polym., 77, 410 (2009); https://doi.org/10.1016/j.carbpol.2009.01.032
N. Sankararamakrishnan and R. Sanghi, Carbohydr. Polym., 66, 160 (2006); https://doi.org/10.1016/j.carbpol.2006.02.035
F.M. Almutairi, H.A. El Rabey, A.A. Tayel, A.I. Alalawy, M.A. Al-Duais, M.I. Sakran and N.S. Zidan, Int. J. Biol. Macromol., 155, 861 (2020); https://doi.org/10.1016/j.ijbiomac.2019.11.207
J.K. Park, M.J. Chung, H.N. Choi and Y.I. Park, Int. J. Mol. Sci., 12, 266 (2011); https://doi.org/10.3390/ijms12010266
Y. S. Wimardhani, D. F. Suniarti, H. J. Freisleben, S.I. Wanandi, N. C. Siregar and M.-A. Ikeda, J. Oral Sci., 56, 119 (2014); https://doi.org/10.2334/josnusd.56.119
H.S. Adhikari and P.N. Yadav, Int. J. Biomater., 2018, 2952085 (2018); https://doi.org/10.1155/2018/2952085