Copyright (c) 2025 Peter Solo, M. Arockia doss, Michael Pillay, Tharsius Raja William Raja

This work is licensed under a Creative Commons Attribution 4.0 International License.
Synthesis, Crystal Structure, DFT, TD-DFT and DOS Analysis of Bis-[2-(3-hydroxy-4-methoxyphenyl)-4,5-diphenyl-1H-imidazol-3-ium]oxalate Ethanol Solvate
Corresponding Author(s) : Peter Solo
Asian Journal of Chemistry,
Vol. 37 No. 8 (2025): Vol 37 Issue 8, 2025
Abstract
A novel imidazolium-oxalate co-crystal was synthesized and characterized using spectroscopic method and single-crystal X-ray diffraction studies. The compound crystallizes into triclinic space group (P–1) with a = 8.792(3), b = 10.814(4), c = 13.024(5), α = 82.881(9), β = 75.347(9), γ = 67.811(9), a volume of V = 1108.7(7) Å3 and Z = 1. The X-ray diffraction studies confirms deprotonation of both the protons from oxalic acid and the protonation of pyrimidine-type nitrogen of the imidazole ring. The crystal structure is largely stabilized by the existence of N–H···O and O–H···O polar interactions between the protonated imidazole compounds and the oxalate ions. Density functional theory (DFT) calculations demonstrated a strong correlation between the optimized constrained structure and the experimental findings. UV-visible spectroscopy, time dependent-DFT and density of states (DOS) studies were performed to study the optical and electronic properties of the studied crystal. With a band gap of 1.807 eV, the organic crystal can be investigated for its applications in organic semiconductors and optical materials.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- O. Ostroverkhova, Chem. Rev., 116, 13279 (2016); https://doi.org/10.1021/acs.chemrev.6b00127
- Y.-L. Shi, M.-P. Zhuo, X.-D. Wang and L.-S. Liao, ACS Appl. Nano Mater., 3, 1080 (2020); https://doi.org/10.1021/acsanm.0c00131
- P. Yu, Y. Zhen, H. Dong and W. Hu, Chem, 5, 2814 (2019); https://doi.org/10.1016/j.chempr.2019.08.019
- M. Jazbinsek, U. Puc, A. Abina and A. Zidansek, Appl. Sci., 9, 882 (2019); https://doi.org/10.3390/app9050882
- X. Yang, B. Gao, Y. Liu, B. Tang, H. Zhang and H. Zhang, J. Mater. Chem. C Mater., 13, 6547 (2025); https://doi.org/10.1039/D5TC00112A
- X. Yang, M.B. Al-Handawi, L. Li, P. Naumov and H. Zhang, Chem. Sci., 15, 2684 (2024); https://doi.org/10.1039/D3SC06469G
- W. Wu, K. Chen, T. Wang, N. Wang, X. Huang, L. Zhou, Z. Wang and H. Hao, J. Mater. Chem. C, 11, 2026 (2023); https://doi.org/10.1039/D2TC04642C
- D. Liao, M. Li, J. Wang, M. Zhang, M. Qiu and C. An, J. Mater. Res. Technol., 27, 3098 (2023); https://doi.org/10.1016/j.jmrt.2023.10.146
- X. Zhou, J. Shan, D. Chen and H. Li, Crystals, 9, 392 (2019); https://doi.org/10.3390/cryst9080392.
- L. Zhu and Y.-B. Zhang, Molecules, 22, 1149 (2017); https://doi.org/10.3390/molecules22071149
- M.E. Casco, F. Krupp, S. Grätz, A. Schwenger, V. Damakoudi, C. Richert, W. Frey and L. Borchardt, Adsorption, 26, 1323 (2020); https://doi.org/10.1007/s10450-020-00259-8
- R. Zhang, H. Daglar, C. Tang, P. Li, L. Feng, H. Han, G. Wu, B.N. Limketkai, Y. Wu, S. Yang, A.X.-Y. Chen, C.L. Stern, C.D. Malliakas, R.Q. Snurr and J.F. Stoddart, Nat. Chem., 16, 1982 (2024); https://doi.org/10.1038/s41557-024-01622-w
- C. Graiff, Crystals, 10, 1021 (2020); https://doi.org/10.3390/cryst10111021
- N. Panina, F.J.J. Leusen, F.F.B.J. Janssen, P. Verwer, H. Meekes, E. Vlieg and G. Deroover, J. Appl. Cryst., 40, 105 (2007); https://doi.org/10.1107/S0021889806043767
- L.S. Taylor, D.E. Braun and J.W. Steed, Cryst. Growth Des., 21, 1375 (2021); https://doi.org/10.1021/acs.cgd.0c01592
- M. Baziar, H.R. Zakeri, S. Ghaleh askari, Z.D. Nejad, M. Shams, I. Anastopoulos, D.A. Giannakoudakis and E.C. Lima, J. Mol. Liq., 332, 115832 (2021); https://doi.org/10.1016/j.molliq.2021.115832
- S. Liu, H. Li, Y. Shuai, Z. Ding and Y. Liu, Mater. Adv., 3, 8647 (2022); https://doi.org/10.1039/D2MA00580H
- N. Motakef-Kazemi, F. Ataei and D. Dorranian, Opt. Quantum Electron., 55, 921 (2023); https://doi.org/10.1007/s11082-023-04775-z
- A. Cammers and S. Parkin, CrystEngComm, 6, 168 (2004); https://doi.org/10.1039/b405096g
- J. Liu, X.-Y. Su, W.-H. Wang, Z.-H. Mao and R.-G. Xie, Acta Crystallogr. Sect. E Struct. Rep. Online, 62, m1173 (2006); https://doi.org/10.1107/S1600536806014905
- K.H. Asressu, C.-K. Chan and C.-C. Wang, RSC Adv., 11, 28061 (2021); https://doi.org/10.1039/D1RA05802A
- T. Seethalakshmi, A. Puratchikody, D.E. Lynch, P. Kaliannan and S. Thamotharan, Acta Crystallogr. Sect. E Struct. Rep. Online, 62, o2803 (2006); https://doi.org/10.1107/S160053680602109X
- C. Rajnák, J. Titiš, O. Fuhr, M. Ruben and R. Boèa, Polyhedron, 123, 122 (2017); https://doi.org/10.1016/j.poly.2016.11.009
- J.-C. Geng, C.-H. Jiao, J.-M. Hao and G.-H. Cui, Z. Naturforsch. B. J. Chem. Sci., 67, 791 (2012); https://doi.org/10.5560/znb.2012-0158
- R.T. Stibrany, H.J. Schugar and J.A. Potenza, Acta Crystallogr. Sect. E Struct. Rep. Online, 60, o1648 (2004); https://doi.org/10.1107/S1600536804019555
- T. Mohandas, R. Sathishkumar, J. Jayabharathi, A. Pasupathi and P. Sakthivel, Acta Crystallogr. Sect. E Struct. Rep. Online, 69, o1293 (2013); https://doi.org/10.1107/S1600536813019351
- T. Kavitha, S. Mayakrishnan, T.P. Perumal, C. Suvasini and S. Lakshmi, IUCrdata, 2, x170089 (2017); https://doi.org/10.1107/S241431461700089X
- A. Karak, S. Banerjee, S. Halder, M. Mandal, D. Banik, A. Maiti, K. Jana and A.K. Mahapatra, New J. Chem., 47, 16756 (2023); https://doi.org/10.1039/D3NJ02545D
- W. Hao, Y. Wang, H. Zhao, J. Zhu and S. Li, Phys. Chem. Chem. Phys., 22, 13802 (2020); https://doi.org/10.1039/D0CP01520B
- S. Sarkar, P.K. Sruthi, N. Ramanathan and K. Sundararajan, J. Mol. Struct., 1204, 127511 (2020); https://doi.org/10.1016/j.molstruc.2019.127511
- Q. Zheng, X. Li, K. Kurpiewska and A. Dömling, Org. Lett., 24, 5014 (2022); https://doi.org/10.1021/acs.orglett.2c01642
- R. Justin Grams, K. Yuan, M.W. Founds, M.L. Ware, M.G. Pilar and K. Hsu, ChemBioChem, 25, e202400382 (2024); https://doi.org/10.1002/cbic.202400382
- S.B. Akula, C. Su, Y.S. Tingare, H.-C. Lan, Y.-J. Lin, Y.-T. Wang, Y.-C. Jheng, X.-C. Lin, Y.-C. Chang and W.-R. Li, J. Mater. Chem. C Mater. Opt. Electron. Devices, 8, 16577 (2020); https://doi.org/10.1039/D0TC03438J
- A. Gabriel Tomulescu, L. Nicoleta Leonat, F. Neatu, V. Stancu, V. Toma, S. Derbali, S. Neatu, A. Mihai Rostas, C. Besleagã, R. Pãtru, I. Pintilie and M. Florea, Sol. Energy Mater. Sol. Cells, 227, 111096 (2021); https://doi.org/10.1016/j.solmat.2021.111096
- W. Pan, J. Lin, J. Wu, X. Wang, G. Li, Y. Du, W. Li, W. Sun and Z. Lan, Appl. Surf. Sci., 604, 154486 (2022); https://doi.org/10.1016/j.apsusc.2022.154486
- M. Mamada, C. PérezBolívar, D. Kumaki, N.A. Esipenko, S. Tokito and P. Anzenbacher Jr., Chem. Eur. J., 20, 11835 (2014); https://doi.org/10.1002/chem.201403058
- B.N. Bideh, M. Moghadam, A. Sousaraei and B.S. Arani, Sci. Rep., 13, 2287 (2023); https://doi.org/10.1038/s41598-023-29527-7
- P. Solo and M. Arockia doss, J. Chem. Crystallogr., 54, 225 (2024); https://doi.org/10.1007/s10870-024-01016-3
- P. Solo and M. Arockia doss, Polycycl. Aromat. Compd., 43, 4924 (2023); https://doi.org/10.1080/10406638.2022.2096650
- P. Solo and M. Arockia doss, J. Iranian Chem. Soc., 21, 2907 (2024); https://doi.org/10.1007/s13738-024-03111-w
- S.K. Callear, M.B. Hursthouse and T.L. Threlfall, CrystEngComm, 12, 898 (2010); https://doi.org/10.1039/B917191F
- A. Rachocki, K. Pogorzelec-Glaser and J. Tritt-Goc, Appl. Magn. Reson., 34, 163 (2008); https://doi.org/10.1007/s00723-008-0088-6
- S. Priya and D.R. Babu, J. Mol. Struct., 1291, 135980 (2023); https://doi.org/10.1016/j.molstruc.2023.135980
- J.N. Sangshetti, N.D. Kokare, S.A. Kotharkara and D.B. Shinde, J. Chem. Sci., 120, 463 (2008); https://doi.org/10.1007/s12039-008-0072-6.
- G.M. Sheldrick, Acta Crystallogr. A, 64, 112 (2008); https://doi.org/10.1107/S0108767307043930.
- G.M. Sheldrick, Acta Crystallogr. C Struct. Chem., 71, 3 (2015); https://doi.org/10.1107/S2053229614024218
- O.V. Dolomanov, L.J. Bourhis, R.J. Gildea, J.A.K. Howard and H. Puschmann, J. Appl. Cryst., 42, 339 (2009); https://doi.org/10.1107/S0021889808042726
- M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, R.L. Martin, V. Bakken, J.A. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, R. Cammi, C. Pomelli, J.W. Ochterski, A.J. Austin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, Ö. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski and D.J. Fox, Gaussian 09, Revision D.01 Gaussian, Inc., Wallingford CT (2013).
- P.R. Spackman, M.J. Turner, J.J. McKinnon, S.K. Wolff, D.J. Grimwood, D. Jayatilaka and M.A. Spackman, J. Appl. Cryst., 54, 1006 (2021); https://doi.org/10.1107/S1600576721002910
- J. Tomasi, B. Mennucci and R. Cammi, Chem. Rev., 105, 2999 (2005); https://doi.org/10.1021/cr9904009
- P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G.L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, A. Kokalj, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A.P. Seitsonen, A. Smogunov, P. Umari and R.M. Wentzcovitch, J. Phys. Condens. Matter, 21, 395502 (2009); https://doi.org/10.1088/0953-8984/21/39/395502
- S. Lakshminarayanan, V. Jeyasingh, K. Murugesan, N. Selvapalam and G. Dass, J. Photochem. Photobiol., 6, 100022 (2021); https://doi.org/10.1016/j.jpap.2021.100022
- A.M. Köster, M. Leboeuf and D.R. Salahub, Molecular Electrostatic Potentials from Density Functional Theory, pp. 105–142 (1996).
- J. Aihara, J. Phys. Chem. A, 103, 7487 (1999); https://doi.org/10.1021/jp990092i
- R. Scholz, Organic Semiconductors,” Encyclopedia of Condensed Matter Physics, pp. 206–221 (2005).
- Y. Wang, F. Silveri, M.K. Bayazit, Q. Ruan, Y. Li, J. Xie, C.R.A. Catlow and J. Tang, Adv. Energy Mater., 8, 1801084 (2018); https://doi.org/10.1002/aenm.201801084
- J.C.S. Costa, R.J.S. Taveira, C.F.R.A.C. Lima, A. Mendes and L.M.N.B.F. Santos, Opt. Mater., 58, 51 (2016); https://doi.org/10.1016/j.optmat.2016.03.041
References
O. Ostroverkhova, Chem. Rev., 116, 13279 (2016); https://doi.org/10.1021/acs.chemrev.6b00127
Y.-L. Shi, M.-P. Zhuo, X.-D. Wang and L.-S. Liao, ACS Appl. Nano Mater., 3, 1080 (2020); https://doi.org/10.1021/acsanm.0c00131
P. Yu, Y. Zhen, H. Dong and W. Hu, Chem, 5, 2814 (2019); https://doi.org/10.1016/j.chempr.2019.08.019
M. Jazbinsek, U. Puc, A. Abina and A. Zidansek, Appl. Sci., 9, 882 (2019); https://doi.org/10.3390/app9050882
X. Yang, B. Gao, Y. Liu, B. Tang, H. Zhang and H. Zhang, J. Mater. Chem. C Mater., 13, 6547 (2025); https://doi.org/10.1039/D5TC00112A
X. Yang, M.B. Al-Handawi, L. Li, P. Naumov and H. Zhang, Chem. Sci., 15, 2684 (2024); https://doi.org/10.1039/D3SC06469G
W. Wu, K. Chen, T. Wang, N. Wang, X. Huang, L. Zhou, Z. Wang and H. Hao, J. Mater. Chem. C, 11, 2026 (2023); https://doi.org/10.1039/D2TC04642C
D. Liao, M. Li, J. Wang, M. Zhang, M. Qiu and C. An, J. Mater. Res. Technol., 27, 3098 (2023); https://doi.org/10.1016/j.jmrt.2023.10.146
X. Zhou, J. Shan, D. Chen and H. Li, Crystals, 9, 392 (2019); https://doi.org/10.3390/cryst9080392.
L. Zhu and Y.-B. Zhang, Molecules, 22, 1149 (2017); https://doi.org/10.3390/molecules22071149
M.E. Casco, F. Krupp, S. Grätz, A. Schwenger, V. Damakoudi, C. Richert, W. Frey and L. Borchardt, Adsorption, 26, 1323 (2020); https://doi.org/10.1007/s10450-020-00259-8
R. Zhang, H. Daglar, C. Tang, P. Li, L. Feng, H. Han, G. Wu, B.N. Limketkai, Y. Wu, S. Yang, A.X.-Y. Chen, C.L. Stern, C.D. Malliakas, R.Q. Snurr and J.F. Stoddart, Nat. Chem., 16, 1982 (2024); https://doi.org/10.1038/s41557-024-01622-w
C. Graiff, Crystals, 10, 1021 (2020); https://doi.org/10.3390/cryst10111021
N. Panina, F.J.J. Leusen, F.F.B.J. Janssen, P. Verwer, H. Meekes, E. Vlieg and G. Deroover, J. Appl. Cryst., 40, 105 (2007); https://doi.org/10.1107/S0021889806043767
L.S. Taylor, D.E. Braun and J.W. Steed, Cryst. Growth Des., 21, 1375 (2021); https://doi.org/10.1021/acs.cgd.0c01592
M. Baziar, H.R. Zakeri, S. Ghaleh askari, Z.D. Nejad, M. Shams, I. Anastopoulos, D.A. Giannakoudakis and E.C. Lima, J. Mol. Liq., 332, 115832 (2021); https://doi.org/10.1016/j.molliq.2021.115832
S. Liu, H. Li, Y. Shuai, Z. Ding and Y. Liu, Mater. Adv., 3, 8647 (2022); https://doi.org/10.1039/D2MA00580H
N. Motakef-Kazemi, F. Ataei and D. Dorranian, Opt. Quantum Electron., 55, 921 (2023); https://doi.org/10.1007/s11082-023-04775-z
A. Cammers and S. Parkin, CrystEngComm, 6, 168 (2004); https://doi.org/10.1039/b405096g
J. Liu, X.-Y. Su, W.-H. Wang, Z.-H. Mao and R.-G. Xie, Acta Crystallogr. Sect. E Struct. Rep. Online, 62, m1173 (2006); https://doi.org/10.1107/S1600536806014905
K.H. Asressu, C.-K. Chan and C.-C. Wang, RSC Adv., 11, 28061 (2021); https://doi.org/10.1039/D1RA05802A
T. Seethalakshmi, A. Puratchikody, D.E. Lynch, P. Kaliannan and S. Thamotharan, Acta Crystallogr. Sect. E Struct. Rep. Online, 62, o2803 (2006); https://doi.org/10.1107/S160053680602109X
C. Rajnák, J. Titiš, O. Fuhr, M. Ruben and R. Boèa, Polyhedron, 123, 122 (2017); https://doi.org/10.1016/j.poly.2016.11.009
J.-C. Geng, C.-H. Jiao, J.-M. Hao and G.-H. Cui, Z. Naturforsch. B. J. Chem. Sci., 67, 791 (2012); https://doi.org/10.5560/znb.2012-0158
R.T. Stibrany, H.J. Schugar and J.A. Potenza, Acta Crystallogr. Sect. E Struct. Rep. Online, 60, o1648 (2004); https://doi.org/10.1107/S1600536804019555
T. Mohandas, R. Sathishkumar, J. Jayabharathi, A. Pasupathi and P. Sakthivel, Acta Crystallogr. Sect. E Struct. Rep. Online, 69, o1293 (2013); https://doi.org/10.1107/S1600536813019351
T. Kavitha, S. Mayakrishnan, T.P. Perumal, C. Suvasini and S. Lakshmi, IUCrdata, 2, x170089 (2017); https://doi.org/10.1107/S241431461700089X
A. Karak, S. Banerjee, S. Halder, M. Mandal, D. Banik, A. Maiti, K. Jana and A.K. Mahapatra, New J. Chem., 47, 16756 (2023); https://doi.org/10.1039/D3NJ02545D
W. Hao, Y. Wang, H. Zhao, J. Zhu and S. Li, Phys. Chem. Chem. Phys., 22, 13802 (2020); https://doi.org/10.1039/D0CP01520B
S. Sarkar, P.K. Sruthi, N. Ramanathan and K. Sundararajan, J. Mol. Struct., 1204, 127511 (2020); https://doi.org/10.1016/j.molstruc.2019.127511
Q. Zheng, X. Li, K. Kurpiewska and A. Dömling, Org. Lett., 24, 5014 (2022); https://doi.org/10.1021/acs.orglett.2c01642
R. Justin Grams, K. Yuan, M.W. Founds, M.L. Ware, M.G. Pilar and K. Hsu, ChemBioChem, 25, e202400382 (2024); https://doi.org/10.1002/cbic.202400382
S.B. Akula, C. Su, Y.S. Tingare, H.-C. Lan, Y.-J. Lin, Y.-T. Wang, Y.-C. Jheng, X.-C. Lin, Y.-C. Chang and W.-R. Li, J. Mater. Chem. C Mater. Opt. Electron. Devices, 8, 16577 (2020); https://doi.org/10.1039/D0TC03438J
A. Gabriel Tomulescu, L. Nicoleta Leonat, F. Neatu, V. Stancu, V. Toma, S. Derbali, S. Neatu, A. Mihai Rostas, C. Besleagã, R. Pãtru, I. Pintilie and M. Florea, Sol. Energy Mater. Sol. Cells, 227, 111096 (2021); https://doi.org/10.1016/j.solmat.2021.111096
W. Pan, J. Lin, J. Wu, X. Wang, G. Li, Y. Du, W. Li, W. Sun and Z. Lan, Appl. Surf. Sci., 604, 154486 (2022); https://doi.org/10.1016/j.apsusc.2022.154486
M. Mamada, C. PérezBolívar, D. Kumaki, N.A. Esipenko, S. Tokito and P. Anzenbacher Jr., Chem. Eur. J., 20, 11835 (2014); https://doi.org/10.1002/chem.201403058
B.N. Bideh, M. Moghadam, A. Sousaraei and B.S. Arani, Sci. Rep., 13, 2287 (2023); https://doi.org/10.1038/s41598-023-29527-7
P. Solo and M. Arockia doss, J. Chem. Crystallogr., 54, 225 (2024); https://doi.org/10.1007/s10870-024-01016-3
P. Solo and M. Arockia doss, Polycycl. Aromat. Compd., 43, 4924 (2023); https://doi.org/10.1080/10406638.2022.2096650
P. Solo and M. Arockia doss, J. Iranian Chem. Soc., 21, 2907 (2024); https://doi.org/10.1007/s13738-024-03111-w
S.K. Callear, M.B. Hursthouse and T.L. Threlfall, CrystEngComm, 12, 898 (2010); https://doi.org/10.1039/B917191F
A. Rachocki, K. Pogorzelec-Glaser and J. Tritt-Goc, Appl. Magn. Reson., 34, 163 (2008); https://doi.org/10.1007/s00723-008-0088-6
S. Priya and D.R. Babu, J. Mol. Struct., 1291, 135980 (2023); https://doi.org/10.1016/j.molstruc.2023.135980
J.N. Sangshetti, N.D. Kokare, S.A. Kotharkara and D.B. Shinde, J. Chem. Sci., 120, 463 (2008); https://doi.org/10.1007/s12039-008-0072-6.
G.M. Sheldrick, Acta Crystallogr. A, 64, 112 (2008); https://doi.org/10.1107/S0108767307043930.
G.M. Sheldrick, Acta Crystallogr. C Struct. Chem., 71, 3 (2015); https://doi.org/10.1107/S2053229614024218
O.V. Dolomanov, L.J. Bourhis, R.J. Gildea, J.A.K. Howard and H. Puschmann, J. Appl. Cryst., 42, 339 (2009); https://doi.org/10.1107/S0021889808042726
M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, R.L. Martin, V. Bakken, J.A. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, R. Cammi, C. Pomelli, J.W. Ochterski, A.J. Austin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, Ö. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski and D.J. Fox, Gaussian 09, Revision D.01 Gaussian, Inc., Wallingford CT (2013).
P.R. Spackman, M.J. Turner, J.J. McKinnon, S.K. Wolff, D.J. Grimwood, D. Jayatilaka and M.A. Spackman, J. Appl. Cryst., 54, 1006 (2021); https://doi.org/10.1107/S1600576721002910
J. Tomasi, B. Mennucci and R. Cammi, Chem. Rev., 105, 2999 (2005); https://doi.org/10.1021/cr9904009
P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G.L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, A. Kokalj, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A.P. Seitsonen, A. Smogunov, P. Umari and R.M. Wentzcovitch, J. Phys. Condens. Matter, 21, 395502 (2009); https://doi.org/10.1088/0953-8984/21/39/395502
S. Lakshminarayanan, V. Jeyasingh, K. Murugesan, N. Selvapalam and G. Dass, J. Photochem. Photobiol., 6, 100022 (2021); https://doi.org/10.1016/j.jpap.2021.100022
A.M. Köster, M. Leboeuf and D.R. Salahub, Molecular Electrostatic Potentials from Density Functional Theory, pp. 105–142 (1996).
J. Aihara, J. Phys. Chem. A, 103, 7487 (1999); https://doi.org/10.1021/jp990092i
R. Scholz, Organic Semiconductors,” Encyclopedia of Condensed Matter Physics, pp. 206–221 (2005).
Y. Wang, F. Silveri, M.K. Bayazit, Q. Ruan, Y. Li, J. Xie, C.R.A. Catlow and J. Tang, Adv. Energy Mater., 8, 1801084 (2018); https://doi.org/10.1002/aenm.201801084
J.C.S. Costa, R.J.S. Taveira, C.F.R.A.C. Lima, A. Mendes and L.M.N.B.F. Santos, Opt. Mater., 58, 51 (2016); https://doi.org/10.1016/j.optmat.2016.03.041