Copyright (c) 2025 Jyoti Bhovi, J. Tonannavar, JAYASHREE TONANNAVAR

This work is licensed under a Creative Commons Attribution 4.0 International License.
MD and DFT Studies of O–H···N Bonded Hordenine Dimer, Aided by Experimental Vibrational Spectroscopy, NBO, AIM and NCI Calculations
Corresponding Author(s) : Jayashree J. Tonannavar
Asian Journal of Chemistry,
Vol. 37 No. 7 (2025): Vol 37 Issue 7, 2025
Abstract
The role of allelopathic and biochemical inhibitor hordenine in many applications may be determined by its potential tendency to the inter–molecular O–H···N bonding among other things. It is of interest to study multi-structural characterizations of the O–H···N bonding interaction to gain insights into the possible functional roles of the bonding, which may be correlated to the diverse application domains. In the present study, we have shown that the O–H···N bonded dimer computed from molecular dynamics (MD) simulation has short-range order and quasi-long range order consistent with the reported XRD results. We computed structural parameters from MD simulation in water yielding radius of gyration, minimum distance and root-mean-square-deviation and radial distribution function values that have been employed to understand the structural behaviour of the dimer. In addition, MD simulation also yielded O–H···O and C–H···N bonds as constituent links in dimer structures. We also combined molecular dynamics (MD) with DFT at B3LYP/6–311++G (d,p) level for computing the afore-mentioned stable structures and associated vibrational and electronic properties. Vibrational IR and Raman spectral features support the O–H···N bonded dimer structure. The orbitals overlap corresponding to the O–H···N bonding interaction has more contributions from s-orbitals of the O–H bond causing its elongation and stretching-mode red shift in the IR. The electron density and its Laplacian values have provided contour maps corresponding to the charge concentration and depletions around the O–H···N bond interaction.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J. Ma, S. Wang, X. Huang, P. Geng, C. Wen, Y. Zhou, L. Yu and X. Wang, J. Pharm. Biomed. Anal., 111, 131 (2015); https://doi.org/10.1016/j.jpba.2015.03.032
- S.C. Kim, J.H. Lee, M.H. Kim, J.A. Lee, Y.B. Kim, E. Jung, Y.S. Kim, J. Lee and D. Park, Food Chem., 141, 174 (2013); https://doi.org/10.1016/j.foodchem.2013.03.017
- B.P. Mukhopadhyay, J.K. Dattagupta and M. Simonetta, Z. Krist. New Cryst. Struct., 187, 221 (1989); https://doi.org/10.1524/zkri.1989.187.14.221
- M. Sobiech, J. Giebultowicz and P. Luliñski, J. Chromatogr. A, 1613, 460677 (2020); https://doi.org/10.1016/j.chroma.2019.460677
- J.S. Fitzgerald, Aust. J. Chem., 17, 160 (1964); https://doi.org/10.1071/CH9640160
- S. Anwar, T. Mohammad, A. Shamsi, A. Queen, S. Parveen, S. Luqman, G.M. Hasan, K.A. Alamry, N. Azum, A.M. Asiri and M.I. Hassan, Biomedicines, 8, 119 (2020); https://doi.org/10.3390/biomedicines8050119
- S. Ghose and J.K. Dattagupta, Z. Kristallogr., 187, 213 (1989); https://doi.org/10.1524/zkri.1989.187.3-4.213
- C.J. Barwell, A.N. Basma, M.A.K. Lafi and L.D. Leake, J. Pharm. Pharmacol., 41, 421 (1989); https://doi.org/10.1111/j.2042-7158.1989.tb06492.x
- A. Dwivedi, V. Dubey and A.K. Bajpai, Int. J. Chem. Stud., 2, 20 (2015).
- M. Parvez and J.F. Malone, Acta Cryst., 293C, 1450 (1991); https://doi.org/10.1107/S0108270190012380
- J. Priscilla, D.A. Dhas, I. Hubert-Joe and S. Balachandran, J. Mol. Struct., 1229, 129823 (2021); https://doi.org/10.1016/j.molstruc.2020.129823
- R.F.W. Bader, Chem. Rev., 91, 893 (1991); https://doi.org/10.1021/cr00005a013
- M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Aricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven Jr., J.A. Montgomery, J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, Ö. Farkas, J.B. Foresman, J. Cioslowski, J.V. Ortiz and D.J. Fox, Gaussian 09, Revision A.1, Gaussian Inc., Wallingford CT (2009).
- M.J. Abraham, D. van der Spoel, E. Lindahl, B. Hess, and the GROMACS development team, GROMACS User Manual version (2019); http://www.gromacs.org
- J. Bhovi, J. Tonannavar and J.J. Tonannavar, J. Mol. Struct., 1299, 137077 (2024); https://doi.org/10.1016/j.molstruc.2023.137077
- B. Hess, J. Chem. Theory Comput., 4, 116 (2008); https://doi.org/10.1021/ct700200b
- W. Humphrey, A. Dalke and K. Schulten, J. Mol. Graph., 33, 7855, (1996); https://doi.org/10.1016/0263-7855(96)00018-5
- T. Lu and F. Chen, J. Comput. Chem., 33, 580 (2012); https://doi.org/10.1002/jcc.22885
- M.H. Jamróz, Spectrochim. Acta A Mol. Biomol. Spectrosc., 114, 220 (2013); https://doi.org/10.1016/j.saa.2013.05.096
- L. Pallavi, J. Tonannavar and J. Tonannavar, J. Mol. Liq., 352, 118746 (2022); https://doi.org/10.1016/j.molliq.2022.118746
- S. Zahn, K. Wendler, L. Delle Site and B. Kirchner, Phys. Chem. Chem. Phys., 13, 15083 (2011); https://doi.org/10.1039/c1cp20288j
- Gromacs Manual-2023.3 Documentation, (2023); https://doi.org/10.5281/zenodo.7588711
- A. Kantardjiev and P.M. Ivanov, Entropy, 22, 1187 (2020); https://doi.org/10.3390/e22101187
- D.H.D. Jong, L.V. Schäfer, A.H. De vries, S.J. Marrink, H.J.C. Berendsen and H. Grubmuller, J. Comput. Chem., 32, 1919 (2011); https://doi.org/10.1002/jcc.21776
- A. Rakita, N. Nikolic, M. Mildner, J. Matiasek and A. Elbe-Bürger, Sci. Rep., 10, 1 (2020); https://doi.org/10.1038/s41598-019-56847-4
- G.R. Desiraju and T. Steiner, The Weak Hydrogen Bond in Structural Chemistry and Biology, Oxford University Press: New York (1999).
- G. Socrates, Infrared Characteristic Group Frequencies, John Wiley & Sons, New York, London, Sydney, Toronto (1980).
- N.B. Colthup, L.H. Daly and S.E. Wiberley, Introduction to Infrared and Raman Spectroscopy, Academic Press Inc., New York and London (1964).
- L.J. Bellamy, The Infrared Spectra of Complex Molecules, Chapman and Hall: London, edn. 3 (1975).
- M.D. Prabhu, J.T. Yenagi, V. Kamat and J. Tonannavar, J. Mol. Struct., 1218, 128495 (2020); https://doi.org/10.1016/j.molstruc.2020.128495
- D. Sajan, J. Binoy, B. Pradeep, K.V. Krishna, V.B. Kartha, I.H. Joe, V.S. Jayakumar, Spectrochim. Acta A Mol. Biomol. Spectrosc., 60, 173 (2004); https://doi.org/10.1016/S1386-1425(03)00193-8
- M. Karabacak, Z. Calisir, M. Kurt, E. Kose and A. Atac, Spectrochim. Acta A Mol. Biomol. Spectrosc., 153, 754 (2016); https://doi.org/10.1016/j.saa.2015.09.007
- J.P. Merrick, D. Moran and L. Radom, J. Phys. Chem. A, 111, 11683 (2007); https://doi.org/10.1021/jp073974n
- E.D. Glendening, C.R. Landis and F. Weinhold, J. WIREs Comput. Mol. Sci., 2, 1 (2012); https://doi.org/10.1002/wcms.51
- V. Krishnakumar, D. Barathi, R. Mathammal, J. Balamani and N. Jayamani, Spectrochim. Acta A Mol. Biomol. Spectrosc., 121, 245 (2014); https://doi.org/10.1016/j.saa.2013.10.068
- S. Yalagi, J. Tonannavar and J. Tonannavar, Heliyon, 5, e01933 (2019); https://doi.org/10.1016/j.heliyon.2019.e01933
- S.S. Malaganvi, J.T. Yenagi and J. Tonannavar, Heliyon, 5, e01586 (2019); https://doi.org/10.1016/j.heliyon.2019.e01586
- L.F. Pacios, J. Phys. Chem. A, 108, 1177 (2004); https://doi.org/10.1021/jp030978t
- E. Espinosa, I. Alkorta, J. Elguero and E. Molins, J. Chem. Phys., 117, 5529 (2002); https://doi.org/10.1063/1.1501133
- P.S.V. Kumar, V. Raghavendra and V. Subramanian, J. Chem. Sci., 128, 1527 (2016); https://doi.org/10.1007/s12039-016-1172-3
- S.G. Aziz, A.O. Alyoubi, S.A. Elroby and R.H. Hilal, Mol. Phys., 115, 2565 (2017); https://doi.org/10.1080/00268976.2017.1335896
- W. Zierkiewicz, J. Fanfrlík, P. Hobza, D. Michalska and T. Zeegers-Huyskens, Theor. Chem. Acc., 135, 217 (2016); https://doi.org/10.1007/s00214-016-1972-z
- I. Rozas, I. Alkorta and J. Elguero, J. Am. Chem. Soc., 122, 11154 (2000); https://doi.org/10.1021/ja0017864
- E.R. Johnson, S. Keinan, P. Mori-Sanchez, J. Contreras-García, A.J. Cohen and W. Yang, J. Am. Chem. Soc., 132, 6498 (2010); https://doi.org/10.1021/ja100936w
- R. Laplaza, F. Peccati, R.A. Boto, C. Quan, A. Carbone, J.-P. Piquemal, Y. Maday and J. Contreras-García, J. WIREs Comput. Mol. Sci., 11, e1497 (2020); https://doi.org/10.1002/wcms.1497
References
J. Ma, S. Wang, X. Huang, P. Geng, C. Wen, Y. Zhou, L. Yu and X. Wang, J. Pharm. Biomed. Anal., 111, 131 (2015); https://doi.org/10.1016/j.jpba.2015.03.032
S.C. Kim, J.H. Lee, M.H. Kim, J.A. Lee, Y.B. Kim, E. Jung, Y.S. Kim, J. Lee and D. Park, Food Chem., 141, 174 (2013); https://doi.org/10.1016/j.foodchem.2013.03.017
B.P. Mukhopadhyay, J.K. Dattagupta and M. Simonetta, Z. Krist. New Cryst. Struct., 187, 221 (1989); https://doi.org/10.1524/zkri.1989.187.14.221
M. Sobiech, J. Giebultowicz and P. Luliñski, J. Chromatogr. A, 1613, 460677 (2020); https://doi.org/10.1016/j.chroma.2019.460677
J.S. Fitzgerald, Aust. J. Chem., 17, 160 (1964); https://doi.org/10.1071/CH9640160
S. Anwar, T. Mohammad, A. Shamsi, A. Queen, S. Parveen, S. Luqman, G.M. Hasan, K.A. Alamry, N. Azum, A.M. Asiri and M.I. Hassan, Biomedicines, 8, 119 (2020); https://doi.org/10.3390/biomedicines8050119
S. Ghose and J.K. Dattagupta, Z. Kristallogr., 187, 213 (1989); https://doi.org/10.1524/zkri.1989.187.3-4.213
C.J. Barwell, A.N. Basma, M.A.K. Lafi and L.D. Leake, J. Pharm. Pharmacol., 41, 421 (1989); https://doi.org/10.1111/j.2042-7158.1989.tb06492.x
A. Dwivedi, V. Dubey and A.K. Bajpai, Int. J. Chem. Stud., 2, 20 (2015).
M. Parvez and J.F. Malone, Acta Cryst., 293C, 1450 (1991); https://doi.org/10.1107/S0108270190012380
J. Priscilla, D.A. Dhas, I. Hubert-Joe and S. Balachandran, J. Mol. Struct., 1229, 129823 (2021); https://doi.org/10.1016/j.molstruc.2020.129823
R.F.W. Bader, Chem. Rev., 91, 893 (1991); https://doi.org/10.1021/cr00005a013
M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Aricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven Jr., J.A. Montgomery, J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, Ö. Farkas, J.B. Foresman, J. Cioslowski, J.V. Ortiz and D.J. Fox, Gaussian 09, Revision A.1, Gaussian Inc., Wallingford CT (2009).
M.J. Abraham, D. van der Spoel, E. Lindahl, B. Hess, and the GROMACS development team, GROMACS User Manual version (2019); http://www.gromacs.org
J. Bhovi, J. Tonannavar and J.J. Tonannavar, J. Mol. Struct., 1299, 137077 (2024); https://doi.org/10.1016/j.molstruc.2023.137077
B. Hess, J. Chem. Theory Comput., 4, 116 (2008); https://doi.org/10.1021/ct700200b
W. Humphrey, A. Dalke and K. Schulten, J. Mol. Graph., 33, 7855, (1996); https://doi.org/10.1016/0263-7855(96)00018-5
T. Lu and F. Chen, J. Comput. Chem., 33, 580 (2012); https://doi.org/10.1002/jcc.22885
M.H. Jamróz, Spectrochim. Acta A Mol. Biomol. Spectrosc., 114, 220 (2013); https://doi.org/10.1016/j.saa.2013.05.096
L. Pallavi, J. Tonannavar and J. Tonannavar, J. Mol. Liq., 352, 118746 (2022); https://doi.org/10.1016/j.molliq.2022.118746
S. Zahn, K. Wendler, L. Delle Site and B. Kirchner, Phys. Chem. Chem. Phys., 13, 15083 (2011); https://doi.org/10.1039/c1cp20288j
Gromacs Manual-2023.3 Documentation, (2023); https://doi.org/10.5281/zenodo.7588711
A. Kantardjiev and P.M. Ivanov, Entropy, 22, 1187 (2020); https://doi.org/10.3390/e22101187
D.H.D. Jong, L.V. Schäfer, A.H. De vries, S.J. Marrink, H.J.C. Berendsen and H. Grubmuller, J. Comput. Chem., 32, 1919 (2011); https://doi.org/10.1002/jcc.21776
A. Rakita, N. Nikolic, M. Mildner, J. Matiasek and A. Elbe-Bürger, Sci. Rep., 10, 1 (2020); https://doi.org/10.1038/s41598-019-56847-4
G.R. Desiraju and T. Steiner, The Weak Hydrogen Bond in Structural Chemistry and Biology, Oxford University Press: New York (1999).
G. Socrates, Infrared Characteristic Group Frequencies, John Wiley & Sons, New York, London, Sydney, Toronto (1980).
N.B. Colthup, L.H. Daly and S.E. Wiberley, Introduction to Infrared and Raman Spectroscopy, Academic Press Inc., New York and London (1964).
L.J. Bellamy, The Infrared Spectra of Complex Molecules, Chapman and Hall: London, edn. 3 (1975).
M.D. Prabhu, J.T. Yenagi, V. Kamat and J. Tonannavar, J. Mol. Struct., 1218, 128495 (2020); https://doi.org/10.1016/j.molstruc.2020.128495
D. Sajan, J. Binoy, B. Pradeep, K.V. Krishna, V.B. Kartha, I.H. Joe, V.S. Jayakumar, Spectrochim. Acta A Mol. Biomol. Spectrosc., 60, 173 (2004); https://doi.org/10.1016/S1386-1425(03)00193-8
M. Karabacak, Z. Calisir, M. Kurt, E. Kose and A. Atac, Spectrochim. Acta A Mol. Biomol. Spectrosc., 153, 754 (2016); https://doi.org/10.1016/j.saa.2015.09.007
J.P. Merrick, D. Moran and L. Radom, J. Phys. Chem. A, 111, 11683 (2007); https://doi.org/10.1021/jp073974n
E.D. Glendening, C.R. Landis and F. Weinhold, J. WIREs Comput. Mol. Sci., 2, 1 (2012); https://doi.org/10.1002/wcms.51
V. Krishnakumar, D. Barathi, R. Mathammal, J. Balamani and N. Jayamani, Spectrochim. Acta A Mol. Biomol. Spectrosc., 121, 245 (2014); https://doi.org/10.1016/j.saa.2013.10.068
S. Yalagi, J. Tonannavar and J. Tonannavar, Heliyon, 5, e01933 (2019); https://doi.org/10.1016/j.heliyon.2019.e01933
S.S. Malaganvi, J.T. Yenagi and J. Tonannavar, Heliyon, 5, e01586 (2019); https://doi.org/10.1016/j.heliyon.2019.e01586
L.F. Pacios, J. Phys. Chem. A, 108, 1177 (2004); https://doi.org/10.1021/jp030978t
E. Espinosa, I. Alkorta, J. Elguero and E. Molins, J. Chem. Phys., 117, 5529 (2002); https://doi.org/10.1063/1.1501133
P.S.V. Kumar, V. Raghavendra and V. Subramanian, J. Chem. Sci., 128, 1527 (2016); https://doi.org/10.1007/s12039-016-1172-3
S.G. Aziz, A.O. Alyoubi, S.A. Elroby and R.H. Hilal, Mol. Phys., 115, 2565 (2017); https://doi.org/10.1080/00268976.2017.1335896
W. Zierkiewicz, J. Fanfrlík, P. Hobza, D. Michalska and T. Zeegers-Huyskens, Theor. Chem. Acc., 135, 217 (2016); https://doi.org/10.1007/s00214-016-1972-z
I. Rozas, I. Alkorta and J. Elguero, J. Am. Chem. Soc., 122, 11154 (2000); https://doi.org/10.1021/ja0017864
E.R. Johnson, S. Keinan, P. Mori-Sanchez, J. Contreras-García, A.J. Cohen and W. Yang, J. Am. Chem. Soc., 132, 6498 (2010); https://doi.org/10.1021/ja100936w
R. Laplaza, F. Peccati, R.A. Boto, C. Quan, A. Carbone, J.-P. Piquemal, Y. Maday and J. Contreras-García, J. WIREs Comput. Mol. Sci., 11, e1497 (2020); https://doi.org/10.1002/wcms.1497