Copyright (c) 2025 S. Senthil Kumar, Arjun Sunil Rao, Arul K Lakshmikandhan, S Boobalan, Basavaraj S Sannakashappanavar

This work is licensed under a Creative Commons Attribution 4.0 International License.
A Remedy for Global Warming through the Effective Use of Waste Dye Effluents for the Synthesis of AlSiO4 Solid Acid Catalysts with Carbon Dioxide Decomposition
Corresponding Author(s) : Arjun Sunil Rao
Asian Journal of Chemistry,
Vol. 37 No. 7 (2025): Vol 37 Issue 7, 2025
Abstract
Global concern about its rising levels in the atmosphere has led to the search for novel strategies to decrease CO2 productions. In this regard, this article presents a new type of catalyst for spontaneous decomposition of CO2. Novel AlSiO4 mesoporous solid acid catalysts are synthesized by different type of dye molecules as templates like anionic dye (Congo red (AlSiO4-15), brilliant yellow (AlSiO4-22) and cationic dye (rhodamine-B (AlSiO4-13R)), nitroso dye (naphthol green-B (AlSiO4-13N)). Here, harmful templates were avoided by using waste dye effluents as an appropriate template for the solid acid catalyst manufacturing process rather than traditional templates. Waste dye effluents were converted into a useful product and applied for environmental remedy. The carbon dioxide breakdown reaction uses the produced solid acid catalysts and was carried out in a recently developed U-type catalytic reactor. The catalytic bed was filled with solid acid catalysts that breakdown CO2 into O2, CO and carbon. The catalysts significantly lower the activation energy of CO2 gas at room pressure and low temperature.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- K.-O. Kwak, S.-J. Jung, S.-Y. Chung, C.-M. Kang, Y. Huh and S.-O. Bae, Biochem. Eng. J., 31, 1 (2006); https://doi.org/10.1016/j.bej.2006.05.001 DOI: https://doi.org/10.1016/j.bej.2006.05.001
- S.-Y. Chiu, C.-Y. Kao, C.-H. Chen, T.-C. Kuan, S.-C. Ong and C.-S. Lin, Bioresour. Technol., 99, 3389 (2008); https://doi.org/10.1016/j.biortech.2007.08.013 DOI: https://doi.org/10.1016/j.biortech.2007.08.013
- M.M. Maroto-Valer, Developments and Innovation in Carbon Dioxide (CO2) Capture and Storage Technology: Carbon Dioxide (CO2) Storage and Utilisation, Woodhead Publishing, edn. 1 (2010). DOI: https://doi.org/10.1533/9781845699581.1
- X. Xu, C. Song, J.M. Andresen, B.G. Miller and A.W. Scaroni, Energy Fuels, 16, 1463 (2002); https://doi.org/10.1021/ef020058u DOI: https://doi.org/10.1021/ef020058u
- C. Nordhei, K. Mathisen, I. Bezverkhyy and D. Nicholson, J. Phys. Chem. C, 112, 6531 (2008); https://doi.org/10.1021/jp7112158 DOI: https://doi.org/10.1021/jp7112158
- R.D. Richardson, E.J. Holland and B.K. Carpenter, Nat. Chem., 3, 301 (2011); https://doi.org/10.1038/nchem.1000 DOI: https://doi.org/10.1038/nchem.1000
- T. Nunnally, K. Gutsol, A. Rabinovich, A. Fridman, A. Gutsol and A. Kemoun, J. Phys. D Appl. Phys., 44, 274009 (2011); https://doi.org/10.1088/0022-3727/44/27/274009 DOI: https://doi.org/10.1088/0022-3727/44/27/274009
- D. Ray and C. Subrahmanyam, RSC Adv., 6, 39492 (2016); https://doi.org/10.1039/C5RA27085E DOI: https://doi.org/10.1039/C5RA27085E
- D. Mei, X. Zhu, Y.-L. He, J.D. Yan and X. Tu, Plasma Sources Sci. Technol., 24, 15011 (2014); https://doi.org/10.1088/0963-0252/24/1/015011 DOI: https://doi.org/10.1088/0963-0252/24/1/015011
- J. Wang, L. Huang, R. Yang, Z. Zhang, J. Wu, Y. Gao, Q. Wang, D. O’Hare and Z. Zhong, Energy Environ. Sci., 7, 3478 (2014); https://doi.org/10.1039/C4EE01647E DOI: https://doi.org/10.1039/C4EE01647E
- M. Ding, R.W. Flaig, H.-L. Jiang and O.M. Yaghi, Chem. Soc. Rev., 48, 2783 (2019); ttps://doi.org/10.1039/C8CS00829A DOI: https://doi.org/10.1039/C8CS00829A
- R. Ben-Mansour, M.A. Habib, O.E. Bamidele, M. Basha, N.A.A. Qasem, A. Peedikakkal, T. Laoui and M. Ali, Appl. Energy, 161, 225 (2016); https://doi.org/10.1016/j.apenergy.2015.10.011 DOI: https://doi.org/10.1016/j.apenergy.2015.10.011
- C. Jia, K. Dastafkan, W. Ren, W. Yang and C. Zhao, Sustain. Energy Fuels, 3, 2890 (2019); https://doi.org/10.1039/C9SE00527G DOI: https://doi.org/10.1039/C9SE00527G
- V. Jiménez, A. Ramírez-Lucas, J. Antonio-Díaz, P. Sánchez and A. Romero, Environ. Sci. Technol., 46, 7407 (2012); https://doi.org/10.1021/es2046553 DOI: https://doi.org/10.1021/es2046553
- C. Kannan, K. Sivakami and J.I. Jeyamalar, Mater. Lett., 113, 93 (2013); https://doi.org/10.1016/j.matlet.2013.08.129 DOI: https://doi.org/10.1016/j.matlet.2013.08.129
- S.M. Solberg, D. Kumar and C.C. Landry, J. Phys. Chem. B, 109, 24331 (2005); https://doi.org/10.1021/jp054187y DOI: https://doi.org/10.1021/jp054187y
- Y. Liu and T.J. Pinnavaia, J. Am. Chem. Soc., 125, 2376 (2003); https://doi.org/10.1021/ja029336u DOI: https://doi.org/10.1021/ja029336u
- C. Kannan, K. Muthuraja and M.R. Devi, J. Hazard. Mater., 244-245, 10 (2013); https://doi.org/10.1016/j.jhazmat.2012.11.016 DOI: https://doi.org/10.1016/j.jhazmat.2012.11.016
- K.J. Edler, P.A. Reynolds, J.W. White and D. Cookson, J. Chem. Soc., Faraday Trans., 93, 199 (1997); https://doi.org/10.1039/a605676h DOI: https://doi.org/10.1039/a605676h
- D. Fan, P. Tian, S. Xu, Q. Xia, X. Su, L. Zhang, Y. Zhang, Y. He and Z. Liu, J. Mater. Chem., 22, 6568 (2012); https://doi.org/10.1039/c2jm15281a DOI: https://doi.org/10.1039/c2jm15281a
- C. Yu, H. Chu, Y. Wan and D. Zhao, J. Mater. Chem., 20, 4705 (2010); https://doi.org/10.1039/b925864g DOI: https://doi.org/10.1039/b925864g
- Y. Wan, Y. Shi and D. Zhao, Chem. Commun., 897 (2007); https://doi.org/10.1039/B610570J DOI: https://doi.org/10.1039/B610570J
- E. Masika and R. Mokaya, Chem. Mater., 23, 2491 (2011); https://doi.org/10.1021/cm200706n DOI: https://doi.org/10.1021/cm200706n
- M.A.M. Thangam, J.I. Jeyamalar and C. Kannan, J. Chem. Pharm. Sci., 9, 2460 (2016).
- C.-Y. Chen, H.-X. Li and M.E. Davis, Micropor. Mater., 2, 17 (1993); https://doi.org/10.1016/0927-6513(93)80058-3 DOI: https://doi.org/10.1016/0927-6513(93)80058-3
- P. Yang, D. Zhao, D.I. Margolese, B.F. Chmelka and G.D. Stucky, Chem. Mater., 11, 2813 (1999); https://doi.org/10.1021/cm990185c DOI: https://doi.org/10.1021/cm990185c
- M. Selvaraj, P.K. Sinha, K. Lee, I. Ahn, A. Pandurangan and T.G. Lee, Micropor. Mesopor. Mater., 78, 139 (2005); https://doi.org/10.1016/j.micromeso.2004.10.004 DOI: https://doi.org/10.1016/j.micromeso.2004.10.004
- R. Srinivasan, R.A. Keogh and B.H. Davis, Appl. Catal. A Gen., 130, 135 (1995); https://doi.org/10.1016/0926-860X(95)00127-1 DOI: https://doi.org/10.1016/0926-860X(95)00127-1
- A. Galarneau, D. Desplantier-Giscard, F. Di Renzo and F. Fajula, Catal. Today, 68, 191 (2001); https://doi.org/10.1016/S0920-5861(01)00300-5 DOI: https://doi.org/10.1016/S0920-5861(01)00300-5
- K. Góra-Marek and J. Datka, Appl. Catal. A Gen., 302, 104 (2006); https://doi.org/10.1016/j.apcata.2005.12.027 DOI: https://doi.org/10.1016/j.apcata.2005.12.027
- S.N.A. Shafie, W.X. Liew, M. Nordin, N.A. Hadi, M.R. Bilad, N. Sazali, Z.A. Putra and M.D.H. Wirzal, Adv. Polym. Technol., 2019, 2924961 (2019); https://doi.org/10.1155/2019/2924961 DOI: https://doi.org/10.1155/2019/2924961
- A. Vinu, T. Krithiga, V. Murugesan and M. Hartmann, Adv. Mater., 16, 1817 (2004); https://doi.org/10.1002/adma.200400229 DOI: https://doi.org/10.1002/adma.200400229
- D.P. Serrano, J.M. Escola and P. Pizarro, Chem. Soc. Rev., 42, 4004 (2013); https://doi.org/10.1039/C2CS35330J DOI: https://doi.org/10.1039/C2CS35330J
- A. Vinu, D.P. Sawant, K. Ariga, K.Z. Hossain, S.B. Halligudi, M. Hartmann and M. Nomura, Chem. Mater., 17, 5339 (2005); https://doi.org/10.1021/cm050883z DOI: https://doi.org/10.1021/cm050883z
- N.I. Taib, S. Endud and M.N. Katun, Int. J. Chem., 3, 2 (2011); https://doi.org/10.5539/ijc.v3n3p2 DOI: https://doi.org/10.5539/ijc.v3n3p2
- M. Hino and K. Arata, Catal. Lett., 30, 25 (1995); https://doi.org/10.1007/BF00813669 DOI: https://doi.org/10.1007/BF00813669
- A. Corma and V. Fornes, Stud. Surf. Sci. Catal., 135, 73 (2001); https://doi.org/10.1016/S0167-2991(01)81187-3 DOI: https://doi.org/10.1016/S0167-2991(01)81187-3
- P.Y. Chen, S.J. Chu, N.S. Chang, T.K. Chuang and L.Y. Chen, Stud. Surf. Sci. Catal., 46m 231 (1989); https://doi.org/10.1016/S0167-2991(08)60980-5 DOI: https://doi.org/10.1016/S0167-2991(08)60980-5
- D.O. de Zárate, F. Bouyer, H. Zschiedrich, P.J. Kooyman, P. Trens, J. Iapichella, R. Durand, C. Guillem and E. Prouzet, Chem. Mater., 20, 1410 (2008); https://doi.org/10.1021/cm7024558 DOI: https://doi.org/10.1021/cm7024558
- A. Belhakem and A. Bengueddach, Bull. Chem. Soc. Ethiop., 20, 99 (2006). DOI: https://doi.org/10.4314/bcse.v20i1.21148
- B. Zhang, X. Li, Q. Wu, C. Zhang, Y. Yu, M. Lan, X. Wei, Z. Ying, T. Liu, G. Liang and F. Zhao, Green Chem., 18, 3315 (2016); https://doi.org/10.1039/C5GC03077C DOI: https://doi.org/10.1039/C5GC03077C
- A.V. Vijayasankar, N. Mahadevaiah, Y.S. Bhat and N. Nagaraju, J. Porous Mater., 18, 369 (2011); https://doi.org/10.1007/s10934-010-9387-z DOI: https://doi.org/10.1007/s10934-010-9387-z
- D. Tian, W. Yan, X. Cao, J. Yu and R. Xu, Chem. Mater., 20, 2160 (2008); https://doi.org/10.1021/cm703317c DOI: https://doi.org/10.1021/cm703317c
- C.-X. Gui, Q.-Q. Wang, S.-M. Hao, J. Qu, P.-P. Huang, C.-Y. Cao, W.-G. Song and Z.-Z. Yu, ACS Appl. Mater. Interfaces, 6, 14653 (2014); https://doi.org/10.1021/am503997e DOI: https://doi.org/10.1021/am503997e
References
K.-O. Kwak, S.-J. Jung, S.-Y. Chung, C.-M. Kang, Y. Huh and S.-O. Bae, Biochem. Eng. J., 31, 1 (2006); https://doi.org/10.1016/j.bej.2006.05.001 DOI: https://doi.org/10.1016/j.bej.2006.05.001
S.-Y. Chiu, C.-Y. Kao, C.-H. Chen, T.-C. Kuan, S.-C. Ong and C.-S. Lin, Bioresour. Technol., 99, 3389 (2008); https://doi.org/10.1016/j.biortech.2007.08.013 DOI: https://doi.org/10.1016/j.biortech.2007.08.013
M.M. Maroto-Valer, Developments and Innovation in Carbon Dioxide (CO2) Capture and Storage Technology: Carbon Dioxide (CO2) Storage and Utilisation, Woodhead Publishing, edn. 1 (2010). DOI: https://doi.org/10.1533/9781845699581.1
X. Xu, C. Song, J.M. Andresen, B.G. Miller and A.W. Scaroni, Energy Fuels, 16, 1463 (2002); https://doi.org/10.1021/ef020058u DOI: https://doi.org/10.1021/ef020058u
C. Nordhei, K. Mathisen, I. Bezverkhyy and D. Nicholson, J. Phys. Chem. C, 112, 6531 (2008); https://doi.org/10.1021/jp7112158 DOI: https://doi.org/10.1021/jp7112158
R.D. Richardson, E.J. Holland and B.K. Carpenter, Nat. Chem., 3, 301 (2011); https://doi.org/10.1038/nchem.1000 DOI: https://doi.org/10.1038/nchem.1000
T. Nunnally, K. Gutsol, A. Rabinovich, A. Fridman, A. Gutsol and A. Kemoun, J. Phys. D Appl. Phys., 44, 274009 (2011); https://doi.org/10.1088/0022-3727/44/27/274009 DOI: https://doi.org/10.1088/0022-3727/44/27/274009
D. Ray and C. Subrahmanyam, RSC Adv., 6, 39492 (2016); https://doi.org/10.1039/C5RA27085E DOI: https://doi.org/10.1039/C5RA27085E
D. Mei, X. Zhu, Y.-L. He, J.D. Yan and X. Tu, Plasma Sources Sci. Technol., 24, 15011 (2014); https://doi.org/10.1088/0963-0252/24/1/015011 DOI: https://doi.org/10.1088/0963-0252/24/1/015011
J. Wang, L. Huang, R. Yang, Z. Zhang, J. Wu, Y. Gao, Q. Wang, D. O’Hare and Z. Zhong, Energy Environ. Sci., 7, 3478 (2014); https://doi.org/10.1039/C4EE01647E DOI: https://doi.org/10.1039/C4EE01647E
M. Ding, R.W. Flaig, H.-L. Jiang and O.M. Yaghi, Chem. Soc. Rev., 48, 2783 (2019); ttps://doi.org/10.1039/C8CS00829A DOI: https://doi.org/10.1039/C8CS00829A
R. Ben-Mansour, M.A. Habib, O.E. Bamidele, M. Basha, N.A.A. Qasem, A. Peedikakkal, T. Laoui and M. Ali, Appl. Energy, 161, 225 (2016); https://doi.org/10.1016/j.apenergy.2015.10.011 DOI: https://doi.org/10.1016/j.apenergy.2015.10.011
C. Jia, K. Dastafkan, W. Ren, W. Yang and C. Zhao, Sustain. Energy Fuels, 3, 2890 (2019); https://doi.org/10.1039/C9SE00527G DOI: https://doi.org/10.1039/C9SE00527G
V. Jiménez, A. Ramírez-Lucas, J. Antonio-Díaz, P. Sánchez and A. Romero, Environ. Sci. Technol., 46, 7407 (2012); https://doi.org/10.1021/es2046553 DOI: https://doi.org/10.1021/es2046553
C. Kannan, K. Sivakami and J.I. Jeyamalar, Mater. Lett., 113, 93 (2013); https://doi.org/10.1016/j.matlet.2013.08.129 DOI: https://doi.org/10.1016/j.matlet.2013.08.129
S.M. Solberg, D. Kumar and C.C. Landry, J. Phys. Chem. B, 109, 24331 (2005); https://doi.org/10.1021/jp054187y DOI: https://doi.org/10.1021/jp054187y
Y. Liu and T.J. Pinnavaia, J. Am. Chem. Soc., 125, 2376 (2003); https://doi.org/10.1021/ja029336u DOI: https://doi.org/10.1021/ja029336u
C. Kannan, K. Muthuraja and M.R. Devi, J. Hazard. Mater., 244-245, 10 (2013); https://doi.org/10.1016/j.jhazmat.2012.11.016 DOI: https://doi.org/10.1016/j.jhazmat.2012.11.016
K.J. Edler, P.A. Reynolds, J.W. White and D. Cookson, J. Chem. Soc., Faraday Trans., 93, 199 (1997); https://doi.org/10.1039/a605676h DOI: https://doi.org/10.1039/a605676h
D. Fan, P. Tian, S. Xu, Q. Xia, X. Su, L. Zhang, Y. Zhang, Y. He and Z. Liu, J. Mater. Chem., 22, 6568 (2012); https://doi.org/10.1039/c2jm15281a DOI: https://doi.org/10.1039/c2jm15281a
C. Yu, H. Chu, Y. Wan and D. Zhao, J. Mater. Chem., 20, 4705 (2010); https://doi.org/10.1039/b925864g DOI: https://doi.org/10.1039/b925864g
Y. Wan, Y. Shi and D. Zhao, Chem. Commun., 897 (2007); https://doi.org/10.1039/B610570J DOI: https://doi.org/10.1039/B610570J
E. Masika and R. Mokaya, Chem. Mater., 23, 2491 (2011); https://doi.org/10.1021/cm200706n DOI: https://doi.org/10.1021/cm200706n
M.A.M. Thangam, J.I. Jeyamalar and C. Kannan, J. Chem. Pharm. Sci., 9, 2460 (2016).
C.-Y. Chen, H.-X. Li and M.E. Davis, Micropor. Mater., 2, 17 (1993); https://doi.org/10.1016/0927-6513(93)80058-3 DOI: https://doi.org/10.1016/0927-6513(93)80058-3
P. Yang, D. Zhao, D.I. Margolese, B.F. Chmelka and G.D. Stucky, Chem. Mater., 11, 2813 (1999); https://doi.org/10.1021/cm990185c DOI: https://doi.org/10.1021/cm990185c
M. Selvaraj, P.K. Sinha, K. Lee, I. Ahn, A. Pandurangan and T.G. Lee, Micropor. Mesopor. Mater., 78, 139 (2005); https://doi.org/10.1016/j.micromeso.2004.10.004 DOI: https://doi.org/10.1016/j.micromeso.2004.10.004
R. Srinivasan, R.A. Keogh and B.H. Davis, Appl. Catal. A Gen., 130, 135 (1995); https://doi.org/10.1016/0926-860X(95)00127-1 DOI: https://doi.org/10.1016/0926-860X(95)00127-1
A. Galarneau, D. Desplantier-Giscard, F. Di Renzo and F. Fajula, Catal. Today, 68, 191 (2001); https://doi.org/10.1016/S0920-5861(01)00300-5 DOI: https://doi.org/10.1016/S0920-5861(01)00300-5
K. Góra-Marek and J. Datka, Appl. Catal. A Gen., 302, 104 (2006); https://doi.org/10.1016/j.apcata.2005.12.027 DOI: https://doi.org/10.1016/j.apcata.2005.12.027
S.N.A. Shafie, W.X. Liew, M. Nordin, N.A. Hadi, M.R. Bilad, N. Sazali, Z.A. Putra and M.D.H. Wirzal, Adv. Polym. Technol., 2019, 2924961 (2019); https://doi.org/10.1155/2019/2924961 DOI: https://doi.org/10.1155/2019/2924961
A. Vinu, T. Krithiga, V. Murugesan and M. Hartmann, Adv. Mater., 16, 1817 (2004); https://doi.org/10.1002/adma.200400229 DOI: https://doi.org/10.1002/adma.200400229
D.P. Serrano, J.M. Escola and P. Pizarro, Chem. Soc. Rev., 42, 4004 (2013); https://doi.org/10.1039/C2CS35330J DOI: https://doi.org/10.1039/C2CS35330J
A. Vinu, D.P. Sawant, K. Ariga, K.Z. Hossain, S.B. Halligudi, M. Hartmann and M. Nomura, Chem. Mater., 17, 5339 (2005); https://doi.org/10.1021/cm050883z DOI: https://doi.org/10.1021/cm050883z
N.I. Taib, S. Endud and M.N. Katun, Int. J. Chem., 3, 2 (2011); https://doi.org/10.5539/ijc.v3n3p2 DOI: https://doi.org/10.5539/ijc.v3n3p2
M. Hino and K. Arata, Catal. Lett., 30, 25 (1995); https://doi.org/10.1007/BF00813669 DOI: https://doi.org/10.1007/BF00813669
A. Corma and V. Fornes, Stud. Surf. Sci. Catal., 135, 73 (2001); https://doi.org/10.1016/S0167-2991(01)81187-3 DOI: https://doi.org/10.1016/S0167-2991(01)81187-3
P.Y. Chen, S.J. Chu, N.S. Chang, T.K. Chuang and L.Y. Chen, Stud. Surf. Sci. Catal., 46m 231 (1989); https://doi.org/10.1016/S0167-2991(08)60980-5 DOI: https://doi.org/10.1016/S0167-2991(08)60980-5
D.O. de Zárate, F. Bouyer, H. Zschiedrich, P.J. Kooyman, P. Trens, J. Iapichella, R. Durand, C. Guillem and E. Prouzet, Chem. Mater., 20, 1410 (2008); https://doi.org/10.1021/cm7024558 DOI: https://doi.org/10.1021/cm7024558
A. Belhakem and A. Bengueddach, Bull. Chem. Soc. Ethiop., 20, 99 (2006). DOI: https://doi.org/10.4314/bcse.v20i1.21148
B. Zhang, X. Li, Q. Wu, C. Zhang, Y. Yu, M. Lan, X. Wei, Z. Ying, T. Liu, G. Liang and F. Zhao, Green Chem., 18, 3315 (2016); https://doi.org/10.1039/C5GC03077C DOI: https://doi.org/10.1039/C5GC03077C
A.V. Vijayasankar, N. Mahadevaiah, Y.S. Bhat and N. Nagaraju, J. Porous Mater., 18, 369 (2011); https://doi.org/10.1007/s10934-010-9387-z DOI: https://doi.org/10.1007/s10934-010-9387-z
D. Tian, W. Yan, X. Cao, J. Yu and R. Xu, Chem. Mater., 20, 2160 (2008); https://doi.org/10.1021/cm703317c DOI: https://doi.org/10.1021/cm703317c
C.-X. Gui, Q.-Q. Wang, S.-M. Hao, J. Qu, P.-P. Huang, C.-Y. Cao, W.-G. Song and Z.-Z. Yu, ACS Appl. Mater. Interfaces, 6, 14653 (2014); https://doi.org/10.1021/am503997e DOI: https://doi.org/10.1021/am503997e