Copyright (c) 2025 Dr Augustine Arul prasad T, Jayamani Thomas, Scholastica Mary Vithiya B

This work is licensed under a Creative Commons Attribution 4.0 International License.
Green Synthesis of Platinum@Silver (Pt@Ag) Bimetallic Nanoparticles Using Carica papaya Aqueous Leaf Extract for Catalytic Reduction of Dyes and their Antimicrobial Activity
Corresponding Author(s) : T. Augustine Arul Prasad
Asian Journal of Chemistry,
Vol. 37 No. 7 (2025): Vol 37 Issue 7, 2025
Abstract
This study presents a green, plant-mediated synthesis of platinum@silver (Pt@Ag) bimetallic nanoparticles using aqueous extracts of Carica papaya leaves as a bio-reducing and capping agent. The synthesized nanoparticles were characterized via UV-Vis spectroscopy, FTIR, XRD, SEM and HRTEM, confirming their crystalline nature, face-centered cubic structure and nanoscale core-shell morphology. FTIR analysis revealed functional groups such as hydroxyl and amide, supporting the biomolecular involvement in nanoparticle stabilization. The Pt@Ag nanoparticles exhibited a significant catalytic activity in the reduction of methylene blue and Congo red dyes, with a pseudo-first-order rate constant of 0.00512 min-1 for methylene blue. Furthermore, the antimicrobial studies demonstrated significant inhibition zones against both Gram-positive and Gram-negative bacteria, outperforming standard antibiotics in some cases. The observed synergistic effects of platinum and silver enhance both redox and ion-release mechanisms, making these nanoparticles promising candidates for environmental remediation and biomedical applications.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- R. Kaur, P. Avti, V. Kumar and R. Kumar, Nano Express, 2, 20005 (2021); https://doi.org/10.1088/2632-959X/abf42a
- B.W. Boote, H. Byun and J. Kim, J. Nanosci. Nanotechnol., 14, 1563 (2014); https://doi.org/10.1166/jnn.2014.9077
- K.S. Siddiqi and A. Husen, Nanoscale Res. Lett., 11, 482 (2016); https://doi.org/10.1186/s11671-016-1695-z
- H. Jung, M.E. King and M.L. Personick, Curr. Opin. Colloid Interface Sci., 40, 104 (2019); https://doi.org/10.1016/j.cocis.2019.02.004
- I. Notar Francesco, F. Fontaine-Vive and S. Antoniotti, ChemCatChem, 6, 2784 (2014); https://doi.org/10.1002/cctc.201402252
- P.K. Dikshit, J. Kumar, A.K. Das, S. Sadhu, S. Sharma, S. Singh, P.K. Gupta and B.S. Kim, Catalysts, 11, 902 (2021); https://doi.org/10.3390/catal11080902
- G. Marslin, K. Siram, Q. Maqbool, R.K. Selvakesavan, D. Kruszka, P. Kachlicki and G. Franklin, Materials, 11, 940 (2018); https://doi.org/10.3390/ma11060940
- J. Sandhya and S. Kalaiselvam, Mater. Res. Express, 7, 15045 (2020); https://doi.org/10.1088/2053-1591/ab6642
- R. Trivedi, T.K. Upadhyay, M.H. Mujahid, F. Khan, P. Pandey, A.B. Sharangi, K. Muzammil, N. Nasir, A. Hassan, N.M. Alabdallah, S. Anwar, S. Siddiqui and M. Saeed, Processes, 10, 338 (2022); https://doi.org/10.3390/pr10020338
- P. Rauwel, Global J. Nanomedicine, 1, (2017); https://doi.org/10.19080/GJN.2017.01.555562
- M. Rawat, J. Singh and H. Kaur, J. Nanomed. Res., 7, (2018); https://doi.org/10.15406/jnmr.2018.07.00191
- A. Shyam, S.S. Chandran, B. George and E. Sreelekha, Inorg. Nano-Metal Chem., 51, 1646 (2021); https://doi.org/10.1080/24701556.2020.1852254
- J. Qu, X. Yuan, X. Wang and P. Shao, Environ. Pollut., 159, 1783 (2011); https://doi.org/10.1016/j.envpol.2011.04.016
- M.W. Alam, H.S. Al Qahtani, M. Aamir, A. Abuzir, M.S. Khan, N. Zaidi, M. Albuhulayqah, S. Mushtaq, and A. Ramya, Polymers, 14, 1827 (2022); https://doi.org/10.3390/polym14091827
- R.R. Banala, V.B. Nagati and P.R. Karnati, Saudi J. Biol. Sci., 22, 637 (2015); https://doi.org/10.1016/j.sjbs.2015.01.007
- R. Mukherjee, D. Talukdar, P. Mukherjee, S. Guha, G.K. Mandal, D. Mitra, R. Naskar, S. Mandal, N. Alam, S.K. Sahu, B. Majumder, G. Das and N. Murmu, ChemistrySelect, 10, e202405116 (2025); https://doi.org/10.1002/slct.202405116
- S.P. Singh, A. Mishra, R.K. Shyanti, R.P. Singh and A. Acharya, Biol. Trace Elem. Res., 199, 1316 (2021); https://doi.org/10.1007/s12011-020-02255-z
- R. Sankar, P. Manikandan, V. Malarvizhi, T. Fathima, K.S. Shivashangari and V. Ravikumar, Spectrochim. Acta A Mol. Biomol. Spectrosc., 121, 746 (2014); https://doi.org/10.1016/j.saa.2013.12.020
- S. Sunkari, B.R. Gangapuram, R. Dadigala, R. Bandi, M. Alle and V. Guttena, J. Anal. Sci. Technol., 8, 13 (2017); https://doi.org/10.1186/s40543-017-0121-1
- G. Das, H.-S. Shin and J.K. Patra, Int. J. Nanomedicine, 15, 9075 (2020); https://doi.org/10.2147/IJN.S277625
- A.S. Rodrigues, J.G.S. Batista, M.A.V. Rodrigues, V.C. Thipe, L.A.R. Minarini, P.S. Lopes and A.B. Lugão, Front. Microbiol., 15, 1440065 (2024); https://doi.org/10.3389/fmicb.2024.1440065
- A, Sati, T.N. Ranade, S.N. Mali, H.K.A. Yasin and A. Pratap, ACS Omega, 10, 7549 (2025); https://doi.org/10.1021/acsomega.4c11045
- S. Sumitha, S. Vasanthi, S. Shalini, S.V. Chinni, S.C.B. Gopinath, P. Anbu, M.B. Bahari, R. Harish, S. Kathiresan and V. Ravichandran, Molecules, 23, 3311 (2018); https://doi.org/10.3390/molecules23123311
- I.A. Holder and S.T. Boyce, Burns, 20, 426 (1994); https://doi.org/10.1016/0305-4179(94)90035-3
- S. Magaldi, S. Mata-Essayag, C. Hartung de Capriles, C. Perez, M.T. Colella, C. Olaizola and Y. Ontiveros, Int. J. Infect. Dis., 8, 39 (2004); https://doi.org/10.1016/j.ijid.2003.03.002
- S. Ahmed, Saifullah, M. Ahmad, B.L. Swami and S. Ikram, J. Radiat. Res. Appl. Sci., 9, 1 (2016); https://doi.org/10.1016/j.jrras.2015.06.006
- S. Chen, S. Thota, X. Wang and J. Zhao, J. Mater. Chem. A, 4, 9038 (2016); https://doi.org/10.1039/C6TA02914K
- M.A. Salem, E.A. Bakr and H.G. ElAttar, Spectrochim. Acta A Mol. Biomol. Spectrosc., 188, 155 (2018); https://doi.org/10.1016/j.saa.2017.07.002
- M. Bekmezci, H. Öztürk, M. Akin, R. Bayat, F. Sen, R. Darabi and H. Karimi-Maleh, Biosensors, 13, 531 (2023); https://doi.org/10.3390/bios13050531
- A.T.N. Dao, D.M. Mott, K. Higashimine and S. Maenosono, Sensors, 13, 7813 (2013); https://doi.org/10.3390/s130607813
- F. Zheng, S.Y. Luk, T.L. Kwong, K.F. Yung, RSC Adv., 6, 44902 (2016); https://doi.org/10.1039/c6ra06398e
- W.A. Zoubi, A.A. Mahmud, F. Hazmatulhaq, M.R. Thalji, S. Leoni, J.-H. Kang and Y.G. Ko, SusMat, 4, e216 (2024); https://doi.org/10.1002/sus2.216
- V.K. Sharma, R.A. Yngard and Y. Lin, Adv. Colloid Interface Sci., 145, 83 (2009); https://doi.org/10.1016/j.cis.2008.09.002
- I.A. Holder and S.T. Boyce, Burns, 20, 426 (1994); https://doi.org/10.1016/0305-4179(94)90035-3
- B. Ranpariya, G. Salunke, S. Karmakar, K. Babiya, S. Sutar, N. Kadoo, P. Kumbhakar and S. Ghosh, Front. Microbiol., 11, 610968 (2020); https://doi.org/10.3389/fmicb.2020.610968
- S. Magaldia, S. Mata-Essayaga, C.H. de Caprilesa, C. Pereza, M.T. Colella, C. Olaizola and Y. Ontiveros, Int. J. Infect. Dis., 8, 39 (2004); https://doi.org/10.1016/j.ijid.2003.03.002
References
R. Kaur, P. Avti, V. Kumar and R. Kumar, Nano Express, 2, 20005 (2021); https://doi.org/10.1088/2632-959X/abf42a
B.W. Boote, H. Byun and J. Kim, J. Nanosci. Nanotechnol., 14, 1563 (2014); https://doi.org/10.1166/jnn.2014.9077
K.S. Siddiqi and A. Husen, Nanoscale Res. Lett., 11, 482 (2016); https://doi.org/10.1186/s11671-016-1695-z
H. Jung, M.E. King and M.L. Personick, Curr. Opin. Colloid Interface Sci., 40, 104 (2019); https://doi.org/10.1016/j.cocis.2019.02.004
I. Notar Francesco, F. Fontaine-Vive and S. Antoniotti, ChemCatChem, 6, 2784 (2014); https://doi.org/10.1002/cctc.201402252
P.K. Dikshit, J. Kumar, A.K. Das, S. Sadhu, S. Sharma, S. Singh, P.K. Gupta and B.S. Kim, Catalysts, 11, 902 (2021); https://doi.org/10.3390/catal11080902
G. Marslin, K. Siram, Q. Maqbool, R.K. Selvakesavan, D. Kruszka, P. Kachlicki and G. Franklin, Materials, 11, 940 (2018); https://doi.org/10.3390/ma11060940
J. Sandhya and S. Kalaiselvam, Mater. Res. Express, 7, 15045 (2020); https://doi.org/10.1088/2053-1591/ab6642
R. Trivedi, T.K. Upadhyay, M.H. Mujahid, F. Khan, P. Pandey, A.B. Sharangi, K. Muzammil, N. Nasir, A. Hassan, N.M. Alabdallah, S. Anwar, S. Siddiqui and M. Saeed, Processes, 10, 338 (2022); https://doi.org/10.3390/pr10020338
P. Rauwel, Global J. Nanomedicine, 1, (2017); https://doi.org/10.19080/GJN.2017.01.555562
M. Rawat, J. Singh and H. Kaur, J. Nanomed. Res., 7, (2018); https://doi.org/10.15406/jnmr.2018.07.00191
A. Shyam, S.S. Chandran, B. George and E. Sreelekha, Inorg. Nano-Metal Chem., 51, 1646 (2021); https://doi.org/10.1080/24701556.2020.1852254
J. Qu, X. Yuan, X. Wang and P. Shao, Environ. Pollut., 159, 1783 (2011); https://doi.org/10.1016/j.envpol.2011.04.016
M.W. Alam, H.S. Al Qahtani, M. Aamir, A. Abuzir, M.S. Khan, N. Zaidi, M. Albuhulayqah, S. Mushtaq, and A. Ramya, Polymers, 14, 1827 (2022); https://doi.org/10.3390/polym14091827
R.R. Banala, V.B. Nagati and P.R. Karnati, Saudi J. Biol. Sci., 22, 637 (2015); https://doi.org/10.1016/j.sjbs.2015.01.007
R. Mukherjee, D. Talukdar, P. Mukherjee, S. Guha, G.K. Mandal, D. Mitra, R. Naskar, S. Mandal, N. Alam, S.K. Sahu, B. Majumder, G. Das and N. Murmu, ChemistrySelect, 10, e202405116 (2025); https://doi.org/10.1002/slct.202405116
S.P. Singh, A. Mishra, R.K. Shyanti, R.P. Singh and A. Acharya, Biol. Trace Elem. Res., 199, 1316 (2021); https://doi.org/10.1007/s12011-020-02255-z
R. Sankar, P. Manikandan, V. Malarvizhi, T. Fathima, K.S. Shivashangari and V. Ravikumar, Spectrochim. Acta A Mol. Biomol. Spectrosc., 121, 746 (2014); https://doi.org/10.1016/j.saa.2013.12.020
S. Sunkari, B.R. Gangapuram, R. Dadigala, R. Bandi, M. Alle and V. Guttena, J. Anal. Sci. Technol., 8, 13 (2017); https://doi.org/10.1186/s40543-017-0121-1
G. Das, H.-S. Shin and J.K. Patra, Int. J. Nanomedicine, 15, 9075 (2020); https://doi.org/10.2147/IJN.S277625
A.S. Rodrigues, J.G.S. Batista, M.A.V. Rodrigues, V.C. Thipe, L.A.R. Minarini, P.S. Lopes and A.B. Lugão, Front. Microbiol., 15, 1440065 (2024); https://doi.org/10.3389/fmicb.2024.1440065
A, Sati, T.N. Ranade, S.N. Mali, H.K.A. Yasin and A. Pratap, ACS Omega, 10, 7549 (2025); https://doi.org/10.1021/acsomega.4c11045
S. Sumitha, S. Vasanthi, S. Shalini, S.V. Chinni, S.C.B. Gopinath, P. Anbu, M.B. Bahari, R. Harish, S. Kathiresan and V. Ravichandran, Molecules, 23, 3311 (2018); https://doi.org/10.3390/molecules23123311
I.A. Holder and S.T. Boyce, Burns, 20, 426 (1994); https://doi.org/10.1016/0305-4179(94)90035-3
S. Magaldi, S. Mata-Essayag, C. Hartung de Capriles, C. Perez, M.T. Colella, C. Olaizola and Y. Ontiveros, Int. J. Infect. Dis., 8, 39 (2004); https://doi.org/10.1016/j.ijid.2003.03.002
S. Ahmed, Saifullah, M. Ahmad, B.L. Swami and S. Ikram, J. Radiat. Res. Appl. Sci., 9, 1 (2016); https://doi.org/10.1016/j.jrras.2015.06.006
S. Chen, S. Thota, X. Wang and J. Zhao, J. Mater. Chem. A, 4, 9038 (2016); https://doi.org/10.1039/C6TA02914K
M.A. Salem, E.A. Bakr and H.G. ElAttar, Spectrochim. Acta A Mol. Biomol. Spectrosc., 188, 155 (2018); https://doi.org/10.1016/j.saa.2017.07.002
M. Bekmezci, H. Öztürk, M. Akin, R. Bayat, F. Sen, R. Darabi and H. Karimi-Maleh, Biosensors, 13, 531 (2023); https://doi.org/10.3390/bios13050531
A.T.N. Dao, D.M. Mott, K. Higashimine and S. Maenosono, Sensors, 13, 7813 (2013); https://doi.org/10.3390/s130607813
F. Zheng, S.Y. Luk, T.L. Kwong, K.F. Yung, RSC Adv., 6, 44902 (2016); https://doi.org/10.1039/c6ra06398e
W.A. Zoubi, A.A. Mahmud, F. Hazmatulhaq, M.R. Thalji, S. Leoni, J.-H. Kang and Y.G. Ko, SusMat, 4, e216 (2024); https://doi.org/10.1002/sus2.216
V.K. Sharma, R.A. Yngard and Y. Lin, Adv. Colloid Interface Sci., 145, 83 (2009); https://doi.org/10.1016/j.cis.2008.09.002
I.A. Holder and S.T. Boyce, Burns, 20, 426 (1994); https://doi.org/10.1016/0305-4179(94)90035-3
B. Ranpariya, G. Salunke, S. Karmakar, K. Babiya, S. Sutar, N. Kadoo, P. Kumbhakar and S. Ghosh, Front. Microbiol., 11, 610968 (2020); https://doi.org/10.3389/fmicb.2020.610968
S. Magaldia, S. Mata-Essayaga, C.H. de Caprilesa, C. Pereza, M.T. Colella, C. Olaizola and Y. Ontiveros, Int. J. Infect. Dis., 8, 39 (2004); https://doi.org/10.1016/j.ijid.2003.03.002