Copyright (c) 2025 Showkat Ahmad Bhawani, Aqil Faiz Mohamad Ramezan, Rachel Marcella Roland, Mohamad Aiman Othman, Aldrin Felix Simbas

This work is licensed under a Creative Commons Attribution 4.0 International License.
Synthesis of Molecularly Imprinted Polymers for the Extraction of p-Hydroxybenzoic Acid
Corresponding Author(s) : Showkat Ahmad Bhawani
Asian Journal of Chemistry,
Vol. 37 No. 7 (2025): Vol 37 Issue 7, 2025
Abstract
p-Hydroxybenzoic acid (p-HBA) is widely found in the environment due of its exceptional properties and has been used in the synthesis of variety of products such as preservatives, dyes, bactericides, etc. This causes a huge disposal of p-HBA in the environment which is considered to be harmful to both aquatic and terrestrial life. The molecular imprinting technique was employed to fabricate a molecularly imprinted polymer (MIP) that possesses selective binding sites for the p-HBA. In this study, p-HBA was used as the template molecule for the MIP synthesis, which was carried out using the precipitation polymerization method with a non-covalent approach. Acrylic acid was employed as the functional monomer, while ethylene glycol dimethylacrylate (EGDMA) was utilized as the cross-linker. The characterization of the MIP of p-HBA was conducted with scanning electron microscopy (SEM) and Fourier transform infrared (FTIR). The SEM results showed that both MIP and the non-imprinted polymer (NIP) of p-HBA were spherical in shape. The MIP attained its highest efficiency at optimum conditions of 1 ppm initial concentration, 0.4 g of polymer dosage and 210 min contact time. Moreover, the competitive binding assay indicated that the MIP displayed a greater affinity towards p-HBA than benzoic acid. The synthesized MIP was successfully used for the extraction p-HBA from blood serum and the extraction efficiency was about 80.56%.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- C. Li, Y. Deng, J. Wang, W. Ruan, S. Wang and W. Kong, Sustainability, 15, 9285 (2023); https://doi.org/10.3390/su15129285s
- C.J. Gao and K. Kannan, Environ. Int., 136, 105465 (2020); https://doi.org/10.1016/j.envint.2020.105465
- H.Z. Castada, Z. Sun, S.A. Barringer and X. Huang, J. Am. Oil Chem. Soc., 97, 289 (2020); https://doi.org/10.1002/aocs.12331
- J.L. Wang and Z.G. Jiang, Int. J. Food Sci. Technol., 57, 1283 (2022); https://doi.org/10.1111/ijfs.15518
- Y. Wang, C. Li, Q. Wang, H. Wang, B. Duan and G. Zhang, J. Soils Sediments, 16, 1858 (2016); https://doi.org/10.1007/s11368-016-1375-8
- C.Y. Liao, J.B. Shi, X.Y. Wang, Q.Q. Zhu and K. Kannan, Environ. Pollut., 253, 759 (2019); https://doi.org/10.1016/j.envpol.2019.07.076
- A.L. Ball, M.E. Solan, M.E. Franco and R. Lavado, Drug Chem. Toxicol., 46, 786 (2022); https://doi.org/10.1080/01480545.2022.2100900
- M.I. Hussain and M.J. Reigosa, Biomolecules, 11, 233 (2021); https://doi.org/10.3390/biom11020233
- M. Nobile, F. Arioli, R. Pavlovic, F. Ceriani, S.K. Lin, S. Panseri, R. Villa and L.M. Chiesa, Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess., 37, 131 (2020); https://doi.org/10.1080/19440049.2019.1682686
- L. Wang, Y.H. Wu, W. Zhang and K. Kannan, Environ. Sci. Technol., 47, 2069 (2013); https://doi.org/10.1021/es304659r
- L.H. Chen, X.M. Yang, W. Raza, J.H. Li, Y.X. Liu, M.H. Qiu, F.G. Zhang and Q.R. Shen, Appl. Microbiol. Biotechnol., 89, 1653 (2011); https://doi.org/10.1007/s00253-010-2948-x
- A. Scavo, C. Abbate and G. Mauromicale, Plant Soil, 442, 23 (2019); https://doi.org/10.1007/s11104-019-04190-y
- W.Y. Hao, L.X. Ren, W. Ran and Q.R. Shen, Plant Soil, 336, 485 (2010); https://doi.org/10.1007/s11104-010-0505-0
- Q. Liu, X. Sun, L. Zhang, K. Li, X. Guo, Y. Guo and Z. Liu, Sci. Hortic., 256, 108541 (2019); https://doi.org/10.1016/j.scienta.2019.05.068
- Z.Z. Zhang, Z.D. Zhang, X.Y. Han, J.H. Wu, L.Z. Zhang, J.R. Wang and G. Wang-Pruski, Ecotoxicol. Environ. Saf., 200, 110779 (2020); https://doi.org/10.1016/j.ecoenv.2020.110779
- A. Muscolo, M.R. Panuccio and M. Sidari, Plant Growth Regul., 35, 31 (2001); https://doi.org/10.1023/A:1013897321852
- E.K. Lim, C.J. Doucet, Y. Li, L. Elias, D. Worrall, S.P. Spencer, J. Ross and D.J. Bowles, J. Biol. Chem., 277, 586 (2002); https://doi.org/10.1074/jbc.M109287200
- T.L. Weir, S.W. Park and J.M. Vivanco, Curr. Opin. Plant Biol., 7, 472 (2004); https://doi.org/10.1016/j.pbi.2004.05.007
- Y. Zhang, M. Gu, K. Shi, Y.H. Zhou and J.Q. Yu, Plant Soil, 327, 455 (2010); https://doi.org/10.1007/s11104-009-0075-1
- C. Huang, L. Xu, S. Jin-jing, Z. Zhang, M. Fu, H. Teng and K. Yi, J. Integr. Agric., 19, 518 (2020); https://doi.org/10.1016/S2095-3119(19)62781-4
- G.T. Liang, J. Guo, S.Y. Zhang and G.C. Zhang, J. For. Res., 32, 2155 (2021); https://doi.org/10.1007/s11676-020-01107-9
- E. Blanco, M.D. Casais, M.D. Mejuto and R. Cela, Anal. Chim. Acta, 647, 104 (2009); https://doi.org/10.1016/j.aca.2009.05.024
- F.Z. Kashani, S.M. Ghoreishi, A. Khoobi and M.A. Enhessari, Mikrochim. Acta, 186, 12 (2019); https://doi.org/10.1007/s00604-018-3113-y
- E. Hoberg, B. Meier and O. Sticher, Phytochem. Anal., 11, 327 (2000); https://doi.org/10.1002/1099-1565(200009/10)11:5<327::AID-PCA523>3.0.CO;2-0
- Y. Shi, J. Zhang, J. He, D. Liu, X. Meng, T. Huang and H.A. He, Talanta, 191, 133 (2019); https://doi.org/10.1016/j.talanta.2018.08.036
- P. Cherian, J. Zhu, W.F. Bergfeld, D. Belsito, R.A. Hill, C.D. Klaassen, D.C. Liebler, J.G. Marks Jr., R.C. Shank, T.J. Slaga, P.W. Snyder and B. Heldreth, Int. J. Toxicol., 39(S1), 5S (2020); https://doi.org/10.1177/1091581820925001
- B.W. Sun, Y.Z. Li and W.B. Chang, J. Mol. Recognit., 14, 388 (2001); https://doi.org/10.1002/jmr.550
- C. Michailof, P. Manesiotis and C. Panayiotou, J. Chromatogr. A, 1182, 25 (2008); https://doi.org/10.1016/j.chroma.2008.01.001
- H.-R. Park, S.-D. Yoon, J.-C. Lee and S.-H. Chough, J. Appl. Polym. Sci., 105, 2824 (2007); https://doi.org/10.1002/app.26265
- A. Beltran, R.M. Marcé, P.A.G. Cormack and F. Borrull, Anal. Chim. Acta, 677, 72 (2010); https://doi.org/10.1016/j.aca.2010.07.021
- Y. Dong, P. Yu, Q. Sun, Y. Lu, Z. Tan and X. Yu, Chem. Res. Chin. Univ., 34, 1051 (2018); https://doi.org/10.1007/s40242-018-8146-6
- G. Zhu, G. Cheng, P. Wang, W. Li, Y. Wang and J. Fan, Talanta, 200, 307 (2019); https://doi.org/10.1016/j.talanta.2019.03.070
- T. Sajini and B. Mathew, Talanta Open, 4, 100072 (2021); https://doi.org/10.1016/j.talo.2021.100072
- N.A. Yusof, A. Beyan and N.A. Ibrahim, Sains Malays., 39, 829 (2010).
- R.M. Roland and S.A. Bhawani, J. Anal. Methods Chem., 2016, 1 (2016); https://doi.org/10.1155/2016/5671507
- R.M. Roland and S.A. Bhawani, Asian J. Chem., 31, 2770 (2019); https://doi.org/10.14233/ajchem.2019.22243
- R.M. Roland, S.A. Bhawani, R. Wahi and M.N.M. Ibrahim, J. Liq. Chromatogr. Relat. Technol., 43, 94 (2020); https://doi.org/10.1080/10826076.2019.1672077
- E.N. Zare, Z. Fallah, V.T. Le, V. Doan, A. Mudhoo, S. Joo, Y. Vasseghian, M. Tajbakhsh, O. Moradi, M. Sillanpää and R.S. Varma, Environ. Chem. Lett., 20, 2629 (2022); https://doi.org/10.1007/s10311-022-01439-4
- E. Caro, N. Masqué, R.M. Marce, F. Borrull, P.A.G. Cormack and D.C. Sherrington, J. Chromatogr. A, 963, 169 (2002); https://doi.org/10.1016/S0021-9673(02)00360-6
- M.A. García Mayor, G. Paniagua González, R.M. Garcinuño Martínez, P. Fernández Hernando and J.S. Durand Alegría, Food Chem., 221, 721 (2017); https://doi.org/10.1016/j.foodchem.2016.11.114
- F.G. Tamayo, J.L. Casillas and A. Martin-esteban, J. Chromatogr. A, 1069, 173 (2005); https://doi.org/10.1016/j.chroma.2005.02.029
- G.P. González, P.F. Hernando and J.S.D. Alegría, Anal. Chim. Acta, 557, 179 (2006); https://doi.org/10.1016/j.aca.2005.10.034
- R.M. Roland, S.A. Bhawani, M.N.M. Ibrahim and R. Wahi, ChemistrySelect, 9, e202303679 (2024); https://doi.org/10.1002/slct.202303679
- R.M. Roland, S.A. Bhawani and M.N.M. Ibrahim, BMC Chem., 17, 165 (2023); https://doi.org/10.1186/s13065-023-01084-0
- R.M. Roland, S.A. Bhawani and M.N.M. Ibrahim, Chem. Biol. Technol. Agric., 10, 92 (2023); https://doi.org/10.1186/s40538-023-00462-z
References
C. Li, Y. Deng, J. Wang, W. Ruan, S. Wang and W. Kong, Sustainability, 15, 9285 (2023); https://doi.org/10.3390/su15129285s
C.J. Gao and K. Kannan, Environ. Int., 136, 105465 (2020); https://doi.org/10.1016/j.envint.2020.105465
H.Z. Castada, Z. Sun, S.A. Barringer and X. Huang, J. Am. Oil Chem. Soc., 97, 289 (2020); https://doi.org/10.1002/aocs.12331
J.L. Wang and Z.G. Jiang, Int. J. Food Sci. Technol., 57, 1283 (2022); https://doi.org/10.1111/ijfs.15518
Y. Wang, C. Li, Q. Wang, H. Wang, B. Duan and G. Zhang, J. Soils Sediments, 16, 1858 (2016); https://doi.org/10.1007/s11368-016-1375-8
C.Y. Liao, J.B. Shi, X.Y. Wang, Q.Q. Zhu and K. Kannan, Environ. Pollut., 253, 759 (2019); https://doi.org/10.1016/j.envpol.2019.07.076
A.L. Ball, M.E. Solan, M.E. Franco and R. Lavado, Drug Chem. Toxicol., 46, 786 (2022); https://doi.org/10.1080/01480545.2022.2100900
M.I. Hussain and M.J. Reigosa, Biomolecules, 11, 233 (2021); https://doi.org/10.3390/biom11020233
M. Nobile, F. Arioli, R. Pavlovic, F. Ceriani, S.K. Lin, S. Panseri, R. Villa and L.M. Chiesa, Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess., 37, 131 (2020); https://doi.org/10.1080/19440049.2019.1682686
L. Wang, Y.H. Wu, W. Zhang and K. Kannan, Environ. Sci. Technol., 47, 2069 (2013); https://doi.org/10.1021/es304659r
L.H. Chen, X.M. Yang, W. Raza, J.H. Li, Y.X. Liu, M.H. Qiu, F.G. Zhang and Q.R. Shen, Appl. Microbiol. Biotechnol., 89, 1653 (2011); https://doi.org/10.1007/s00253-010-2948-x
A. Scavo, C. Abbate and G. Mauromicale, Plant Soil, 442, 23 (2019); https://doi.org/10.1007/s11104-019-04190-y
W.Y. Hao, L.X. Ren, W. Ran and Q.R. Shen, Plant Soil, 336, 485 (2010); https://doi.org/10.1007/s11104-010-0505-0
Q. Liu, X. Sun, L. Zhang, K. Li, X. Guo, Y. Guo and Z. Liu, Sci. Hortic., 256, 108541 (2019); https://doi.org/10.1016/j.scienta.2019.05.068
Z.Z. Zhang, Z.D. Zhang, X.Y. Han, J.H. Wu, L.Z. Zhang, J.R. Wang and G. Wang-Pruski, Ecotoxicol. Environ. Saf., 200, 110779 (2020); https://doi.org/10.1016/j.ecoenv.2020.110779
A. Muscolo, M.R. Panuccio and M. Sidari, Plant Growth Regul., 35, 31 (2001); https://doi.org/10.1023/A:1013897321852
E.K. Lim, C.J. Doucet, Y. Li, L. Elias, D. Worrall, S.P. Spencer, J. Ross and D.J. Bowles, J. Biol. Chem., 277, 586 (2002); https://doi.org/10.1074/jbc.M109287200
T.L. Weir, S.W. Park and J.M. Vivanco, Curr. Opin. Plant Biol., 7, 472 (2004); https://doi.org/10.1016/j.pbi.2004.05.007
Y. Zhang, M. Gu, K. Shi, Y.H. Zhou and J.Q. Yu, Plant Soil, 327, 455 (2010); https://doi.org/10.1007/s11104-009-0075-1
C. Huang, L. Xu, S. Jin-jing, Z. Zhang, M. Fu, H. Teng and K. Yi, J. Integr. Agric., 19, 518 (2020); https://doi.org/10.1016/S2095-3119(19)62781-4
G.T. Liang, J. Guo, S.Y. Zhang and G.C. Zhang, J. For. Res., 32, 2155 (2021); https://doi.org/10.1007/s11676-020-01107-9
E. Blanco, M.D. Casais, M.D. Mejuto and R. Cela, Anal. Chim. Acta, 647, 104 (2009); https://doi.org/10.1016/j.aca.2009.05.024
F.Z. Kashani, S.M. Ghoreishi, A. Khoobi and M.A. Enhessari, Mikrochim. Acta, 186, 12 (2019); https://doi.org/10.1007/s00604-018-3113-y
E. Hoberg, B. Meier and O. Sticher, Phytochem. Anal., 11, 327 (2000); https://doi.org/10.1002/1099-1565(200009/10)11:5<327::AID-PCA523>3.0.CO;2-0
Y. Shi, J. Zhang, J. He, D. Liu, X. Meng, T. Huang and H.A. He, Talanta, 191, 133 (2019); https://doi.org/10.1016/j.talanta.2018.08.036
P. Cherian, J. Zhu, W.F. Bergfeld, D. Belsito, R.A. Hill, C.D. Klaassen, D.C. Liebler, J.G. Marks Jr., R.C. Shank, T.J. Slaga, P.W. Snyder and B. Heldreth, Int. J. Toxicol., 39(S1), 5S (2020); https://doi.org/10.1177/1091581820925001
B.W. Sun, Y.Z. Li and W.B. Chang, J. Mol. Recognit., 14, 388 (2001); https://doi.org/10.1002/jmr.550
C. Michailof, P. Manesiotis and C. Panayiotou, J. Chromatogr. A, 1182, 25 (2008); https://doi.org/10.1016/j.chroma.2008.01.001
H.-R. Park, S.-D. Yoon, J.-C. Lee and S.-H. Chough, J. Appl. Polym. Sci., 105, 2824 (2007); https://doi.org/10.1002/app.26265
A. Beltran, R.M. Marcé, P.A.G. Cormack and F. Borrull, Anal. Chim. Acta, 677, 72 (2010); https://doi.org/10.1016/j.aca.2010.07.021
Y. Dong, P. Yu, Q. Sun, Y. Lu, Z. Tan and X. Yu, Chem. Res. Chin. Univ., 34, 1051 (2018); https://doi.org/10.1007/s40242-018-8146-6
G. Zhu, G. Cheng, P. Wang, W. Li, Y. Wang and J. Fan, Talanta, 200, 307 (2019); https://doi.org/10.1016/j.talanta.2019.03.070
T. Sajini and B. Mathew, Talanta Open, 4, 100072 (2021); https://doi.org/10.1016/j.talo.2021.100072
N.A. Yusof, A. Beyan and N.A. Ibrahim, Sains Malays., 39, 829 (2010).
R.M. Roland and S.A. Bhawani, J. Anal. Methods Chem., 2016, 1 (2016); https://doi.org/10.1155/2016/5671507
R.M. Roland and S.A. Bhawani, Asian J. Chem., 31, 2770 (2019); https://doi.org/10.14233/ajchem.2019.22243
R.M. Roland, S.A. Bhawani, R. Wahi and M.N.M. Ibrahim, J. Liq. Chromatogr. Relat. Technol., 43, 94 (2020); https://doi.org/10.1080/10826076.2019.1672077
E.N. Zare, Z. Fallah, V.T. Le, V. Doan, A. Mudhoo, S. Joo, Y. Vasseghian, M. Tajbakhsh, O. Moradi, M. Sillanpää and R.S. Varma, Environ. Chem. Lett., 20, 2629 (2022); https://doi.org/10.1007/s10311-022-01439-4
E. Caro, N. Masqué, R.M. Marce, F. Borrull, P.A.G. Cormack and D.C. Sherrington, J. Chromatogr. A, 963, 169 (2002); https://doi.org/10.1016/S0021-9673(02)00360-6
M.A. García Mayor, G. Paniagua González, R.M. Garcinuño Martínez, P. Fernández Hernando and J.S. Durand Alegría, Food Chem., 221, 721 (2017); https://doi.org/10.1016/j.foodchem.2016.11.114
F.G. Tamayo, J.L. Casillas and A. Martin-esteban, J. Chromatogr. A, 1069, 173 (2005); https://doi.org/10.1016/j.chroma.2005.02.029
G.P. González, P.F. Hernando and J.S.D. Alegría, Anal. Chim. Acta, 557, 179 (2006); https://doi.org/10.1016/j.aca.2005.10.034
R.M. Roland, S.A. Bhawani, M.N.M. Ibrahim and R. Wahi, ChemistrySelect, 9, e202303679 (2024); https://doi.org/10.1002/slct.202303679
R.M. Roland, S.A. Bhawani and M.N.M. Ibrahim, BMC Chem., 17, 165 (2023); https://doi.org/10.1186/s13065-023-01084-0
R.M. Roland, S.A. Bhawani and M.N.M. Ibrahim, Chem. Biol. Technol. Agric., 10, 92 (2023); https://doi.org/10.1186/s40538-023-00462-z