Copyright (c) 2025 RAMIJ RAJA MONDAL

This work is licensed under a Creative Commons Attribution 4.0 International License.
A Review on Visible-Light-Mediated Aziridine Synthesis: Mechanisms and Recent Advances
Corresponding Author(s) : Ramij Raja Mondal
Asian Journal of Chemistry,
Vol. 37 No. 7 (2025): Vol 37 Issue 7, 2025
Abstract
Aziridines are highly valued in synthetic chemistry due to their substantial ring strain and reactive C-N bonds, making them remarkably reactive and essential for various transformations in organic synthesis. Their ring-opening ability reactions is crucial for synthesizing complex molecules, including natural products and pharmaceuticals. Over 130 biologically active aziridine-containing compounds exhibit pharmacological activities, including antitumor, antimicrobial and antibacterial effects, making aziridines key sources for drug prototypes and potential leads for drug discovery. In recent decades, numerous innovative and practical methodologies have been developed in the chemistry of aziridines, focusing on their synthesis and transformation into diverse functional forms. Traditional methods typically involve the use of precious transition metals, oxidants and strong acids or bases under harsh reaction conditions. In contrast, photochemistry has emerged as an intriguing approach, enabling the construction of aziridine derivatives from diverse substrates under milder conditions. Consequently, numerous light-driven synthetic approaches featuring high efficiency and mild conditions have been developed. This review focuses on environment-friendly and benign synthetic methods for preparing aziridine compounds, along with mechanistic insights into their formation under photocatalytic conditions.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S. Stankovic, M. D’hooghe, S. Catak, M. Waroquier, V. Van Speybroeck, H. Eum, N. De Kimpe and H.-J. Ha, Chem. Soc. Rev., 41, 643 (2012); https://doi.org/10.1039/C1CS15140A
- H. Ohno, Chem. Rev., 114, 7784 (2014); https://doi.org/10.1021/cr400543u
- I.M.B. Nielsen, J. Phys. Chem. A, 102, 3193 (1998); https://doi.org/10.1021/jp9805499
- X. Ju, M. Lee, J.C. Leung and J. Lee, Eur. J. Org. Chem., 28, e202401414 (2025); https://doi.org/10.1002/ejoc.202401414
- C. Schneider, Angew. Chem. Int. Ed., 48, 2082 (2009); https://doi.org/10.1002/anie.200805542
- P. Lu, Tetrahedron, 66, 2549 (2010); https://doi.org/10.1016/j.tet.2010.01.077
- A.H. Lewin, H.A. Navarro and S.W. Mascarella, Bioorg. Med. Chem., 16, 7415 (2008); https://doi.org/10.1016/j.bmc.2008.06.009
- E.T. Marris, D.S. Rampon and J.M. Schomaker, Acc. Chem. Res., 58, 231 (2024); https://doi.org/10.1021/acs.accounts.4c00670
- Q.-H. Liu, J. Liu, Y.-P. Han, Y.-M. Liang and L.-Z. Peng, Eur. J. Org. Chem., 28, e202401048 (2025); https://doi.org/10.1002/ejoc.202401048
- X.E. Hu, Tetrahedron, 60, 2701 (2004); https://doi.org/10.1016/j.tet.2004.01.042
- A.K. Yudin, Aziridines and Epoxides in Organic Synthesis, WileyVCH, Weinheim (2006).
- P. Sarojini, M. Jeyachandran, D. Sriram, P. Ranganathan and S. Gandhimathi, J. Mol. Struct., 1233, 130038 (2021); https://doi.org/10.1016/j.molstruc.2021.130038
- N.A. Romero and D.A. Nicewicz, Chem. Rev., 116, 10075 (2016); https://doi.org/10.1021/acs.chemrev.6b00057
- M. Parasram and V. Gevorgyan, Chem. Soc. Rev., 46, 6227 (2017); https://doi.org/10.1039/C7CS00226B
- J.D. Bell and J.A. Murphy, Chem. Soc. Rev., 50, 9540 (2021); https://doi.org/10.1039/D1CS00311A
- K.P.S. Cheung, S. Sarkar, and V. Gevorgyan, Chem. Rev., 122, 1543 (2022); https://doi.org/10.1021/acs.chemrev.1c00403
- S.P. Pitre and L.E. Overman, Chem. Rev., 122, 1717 (2022); https://doi.org/10.1021/acs.chemrev.1c00247
- A. Gourevitch, V.Z. Rossomano and J. Lein, Antibiot. Chemother., 10, 48 (1961).
- M. Novak, B. Kornovski and K.R. Kunz, Can. J. Zool., 69, 1715 (1991); https://doi.org/10.1139/z91-238
- C. DeBoer, A. Dietz, N.E. Lummus and G.M. Savage, Antimicrob. Agents Ann., 60, 17 (1960).
- D.V. Lefemine, M. Dann, F. Barbatschi, W.K. Hausmann, V. Zbinovsky, P. Monnikendam, J. Adam and N. Bohonos, J. Am. Chem. Soc., 84, 3184 (1962); https://doi.org/10.1021/ja00875a031
- C. Urakawa, M. Kawanishi, A. Iwasaki, K. Shirahata, K. Nakano, S. Takahashi and K. Mineura, Jpn Kokai Tokkyo Koho, Japanese Patent JP 55015408 19800202, p 15 (1980).
- Y. Naoe, M. Inami, S. Matsumoto, F. Nishigaki, S. Tsujimoto, I. Kawamura, K. Miyayasu, T. Manda and K. Shimomura, Cancer Chemother. Pharmacol., 42, 31 (1998); https://doi.org/10.1007/s002800050781
- P.A.S. Lowden, Org. Synth., 11, 399 (2006); https://doi.org/10.1002/3527607862.ch11
- K.I. Harada, K. Tomita, K. Fujii, K. Masuda, Y. Mikami, K. Yazawa and H. Komaki, J. Antibiot., 57, 125 (2004); https://doi.org/10.7164/antibiotics.57.125
- K. Yokoi, K. Nagaoka and T. Nakashima, Chem. Pharm. Bull., 34, 4554 (1986); https://doi.org/10.1248/cpb.34.4554
- T. Tsuchida, H. Iinuma, N. Kinoshita, T. Ikeda, R. Sawa, Y. Takahashi, H. Naganawa, T. Sawa, M. Hamada and T. Takeuchi, J. Antibiot., 46, 1772 (1993); https://doi.org/10.7164/antibiotics.46.1772
- L. Degennaro, P. Trinchera and R. Luisi, Chem. Rev., 114, 7881 (2014); https://doi.org/10.1021/cr400553c
- Z. Yu, Z. Lu and W.D. Wulff, Synlett, 17, 2715 (2009); https://doi.org/10.1055/s-0029-1217979
- P. Roth, P.G. Andersson and P. Somfai, Chem. Commun., 1752, 1752 (2002); https://doi.org/10.1039/b203932j
- J. Pan, J.H. Wu, H. Zhang, X. Ren, J.P. Tan, L. Zhu, H.S. Zhang, C. Jiang and T. Wang, Angew. Chem. Int. Ed., 58, 7425 (2019); https://doi.org/10.1002/anie.201900613
- N. De Kimpe, R. Verhé, L. De Buyck and N. Schamp, Recl. Trav. Chim. Pays Bas, 96, 242 (1977); https://doi.org/10.1002/recl.19770960908
- Q.Q. Cheng, Z. Zhou, H. Jiang, J.H. Siitonen, D.H. Ess, X. Zhang and L. Kurti, Nat. Catal., 3, 386 (2020); https://doi.org/10.1038/s41929-020-0430-4
- D.J. Gorin, N.R. Davis and F.D. Toste, J. Am. Chem. Soc., 127, 11260 (2005); https://doi.org/10.1021/ja053804t
- E.T. Hennessy, R.Y. Liu, D.A. Iovan, R.A. Duncan and T.A. Betley, Chem. Sci., 5, 1526 (2014); https://doi.org/10.1039/C3SC52533C
- M. Goswami, V. Lyaskovskyy, S.R. Domingos, W.J. Buma, S. Woutersen, O. Troeppner, I. Ivanovic-Burmazovic, H. Lu, X. Cui, X.P. Zhang, E.J. Reijerse, S. DeBeer, M.M. van Schooneveld, F.F. Pfaff, K. Ray and B. de Bruin, J. Am. Chem. Soc., 137, 5468 (2015); https://doi.org/10.1021/jacs.5b01197
- W. Mao, Z. Zhang, D. Fehn, S.A.V. Jannuzzi, F.W. Heinemann, A. Scheurer, M. van Gastel, S. DeBeer, D. Munz and K.J. Meyer, J. Am. Chem. Soc., 145, 13650 (2023); https://doi.org/10.1021/jacs.3c01478
- J.L. Jat, M.P. Paudyal, H. Gao, Q.L. Xu, M. Yousufuddin, D. Devarajan, D.H. Ess, L. Kurti and J.R. Falck, Science, 343, 61 (2014); https://doi.org/10.1126/science.1245727
- G.S. Hammond and N.J. Turro, Science, 142, 1541 (1963); https://doi.org/10.1126/science.142.3599.1541
- A.B. Beeler, Chem. Rev., 116, 9629 (2016); https://doi.org/10.1021/acs.chemrev.6b00378
- C. Empel and R.M. Koenigs, Chem Catal., 2, 2506 (2022); https://doi.org/10.1016/j.checat.2022.09.008
- S.O. Scholz, E.P. Farney, S. Kim, D.M. Bates and T.P. Yoon, Angew. Chem. Int. Ed., 55, 2239 (2016); https://doi.org/10.1002/anie.201510868
- Y. Zhang, X. Dong, Y. Wu, G. Li and H. Lu, Org. Lett., 20, 4838 (2018); https://doi.org/10.1021/acs.orglett.8b01980
- S. Masakado, Y. Kobayashi and Y. Takemoto, Chem. Pharm. Bull., 66, 688 (2018); https://doi.org/10.1248/cpb.c18-00198
- Y. Guo, C. Pei, S. Jana and R.M. Koenigs, ACS Catal., 11, 337 (2021); https://doi.org/10.1021/acscatal.0c04564
- O.S. Srivastava, V. Anand and N. Rastogi, Asian J. Org. Chem., 12, e202300415 (2023); https://doi.org/10.1002/ajoc.202300415
- T. Koike and M. Akita, Inorg. Chem. Front., 1, 562 (2014); https://doi.org/10.1039/C4QI00053F
- D. Dam, N.R. Lagerweij, K.M. Janmaat, K. Kok, E. Bouwman and J.D.C. Codée, J. Org. Chem., 89, 3251 (2024); https://doi.org/10.1021/acs.joc.3c02709
- N. Baris, M. Draèínský, J. Tarábek, J. Filgas, P. Slavíèek, L. Ludvíková, S. Boháèová, T. Slanina, B. Klepetáøová and P. Beier, Angew. Chem. Int. Ed., 63, e202315162 (2024); https://doi.org/10.1002/anie.202315162
- J.K. Mitchell, W.A. Hussain, A.H. Bansode, R.M. O’Connor and M. Parasram, J. Am. Chem. Soc., 146, 9499 (2024); https://doi.org/10.1021/jacs.3c14713
- Y.D. Du, C.Y. Zhou, W.P. To, H.X. Wang and C.M. Che, Chem. Sci., 11, 4680 (2020); https://doi.org/10.1039/D0SC00784F
- X. Cheng, B.G. Cai, H. Mao, J. Lu, L. Li, K. Wang and J. Xuan, Org. Lett., 23, 4109 (2021); https://doi.org/10.1021/acs.orglett.1c00979
- Y. Liu, X. Dong, G. Deng and L. Zhou, Sci. China Chem., 59, 199 (2016); https://doi.org/10.1007/s11426-015-5513-8
- A. Itoh, K. Matsuzawa, Y. Nagasawa, E. Yamaguchi and N. Tada, Synthesis, 48, 2845 (2016); https://doi.org/10.1055/s-0035-1561635
- W. Yu, J. Chen, Y. Wei, Z. Wang and P. Xu, Chem. Commun., 54, 1948 (2018); https://doi.org/10.1039/C7CC09151F
- S.B. Goud, R.L. Dhakar and S. Samanta, Chem. Asian J., 19, e202300904 (2024); https://doi.org/10.1002/asia.202300904
- E. Kim, S. Choi, H. Kim and E.J. Cho, Chem. Eur. J., 19, 6209 (2013); https://doi.org/10.1002/chem.201300564
- X.X. Liu, J. Jia, Z. Wang, Y.T. Zhang, J. Chen, K. Yang, C.Y. He and L. Zhao, Adv. Synth. Catal., 362, 2604 (2020); https://doi.org/10.1002/adsc.202000342
- D. de Loera and M.A. Garcia-Garibay, Org. Lett., 14, 3874 (2012); https://doi.org/10.1021/ol301582n
References
S. Stankovic, M. D’hooghe, S. Catak, M. Waroquier, V. Van Speybroeck, H. Eum, N. De Kimpe and H.-J. Ha, Chem. Soc. Rev., 41, 643 (2012); https://doi.org/10.1039/C1CS15140A
H. Ohno, Chem. Rev., 114, 7784 (2014); https://doi.org/10.1021/cr400543u
I.M.B. Nielsen, J. Phys. Chem. A, 102, 3193 (1998); https://doi.org/10.1021/jp9805499
X. Ju, M. Lee, J.C. Leung and J. Lee, Eur. J. Org. Chem., 28, e202401414 (2025); https://doi.org/10.1002/ejoc.202401414
C. Schneider, Angew. Chem. Int. Ed., 48, 2082 (2009); https://doi.org/10.1002/anie.200805542
P. Lu, Tetrahedron, 66, 2549 (2010); https://doi.org/10.1016/j.tet.2010.01.077
A.H. Lewin, H.A. Navarro and S.W. Mascarella, Bioorg. Med. Chem., 16, 7415 (2008); https://doi.org/10.1016/j.bmc.2008.06.009
E.T. Marris, D.S. Rampon and J.M. Schomaker, Acc. Chem. Res., 58, 231 (2024); https://doi.org/10.1021/acs.accounts.4c00670
Q.-H. Liu, J. Liu, Y.-P. Han, Y.-M. Liang and L.-Z. Peng, Eur. J. Org. Chem., 28, e202401048 (2025); https://doi.org/10.1002/ejoc.202401048
X.E. Hu, Tetrahedron, 60, 2701 (2004); https://doi.org/10.1016/j.tet.2004.01.042
A.K. Yudin, Aziridines and Epoxides in Organic Synthesis, WileyVCH, Weinheim (2006).
P. Sarojini, M. Jeyachandran, D. Sriram, P. Ranganathan and S. Gandhimathi, J. Mol. Struct., 1233, 130038 (2021); https://doi.org/10.1016/j.molstruc.2021.130038
N.A. Romero and D.A. Nicewicz, Chem. Rev., 116, 10075 (2016); https://doi.org/10.1021/acs.chemrev.6b00057
M. Parasram and V. Gevorgyan, Chem. Soc. Rev., 46, 6227 (2017); https://doi.org/10.1039/C7CS00226B
J.D. Bell and J.A. Murphy, Chem. Soc. Rev., 50, 9540 (2021); https://doi.org/10.1039/D1CS00311A
K.P.S. Cheung, S. Sarkar, and V. Gevorgyan, Chem. Rev., 122, 1543 (2022); https://doi.org/10.1021/acs.chemrev.1c00403
S.P. Pitre and L.E. Overman, Chem. Rev., 122, 1717 (2022); https://doi.org/10.1021/acs.chemrev.1c00247
A. Gourevitch, V.Z. Rossomano and J. Lein, Antibiot. Chemother., 10, 48 (1961).
M. Novak, B. Kornovski and K.R. Kunz, Can. J. Zool., 69, 1715 (1991); https://doi.org/10.1139/z91-238
C. DeBoer, A. Dietz, N.E. Lummus and G.M. Savage, Antimicrob. Agents Ann., 60, 17 (1960).
D.V. Lefemine, M. Dann, F. Barbatschi, W.K. Hausmann, V. Zbinovsky, P. Monnikendam, J. Adam and N. Bohonos, J. Am. Chem. Soc., 84, 3184 (1962); https://doi.org/10.1021/ja00875a031
C. Urakawa, M. Kawanishi, A. Iwasaki, K. Shirahata, K. Nakano, S. Takahashi and K. Mineura, Jpn Kokai Tokkyo Koho, Japanese Patent JP 55015408 19800202, p 15 (1980).
Y. Naoe, M. Inami, S. Matsumoto, F. Nishigaki, S. Tsujimoto, I. Kawamura, K. Miyayasu, T. Manda and K. Shimomura, Cancer Chemother. Pharmacol., 42, 31 (1998); https://doi.org/10.1007/s002800050781
P.A.S. Lowden, Org. Synth., 11, 399 (2006); https://doi.org/10.1002/3527607862.ch11
K.I. Harada, K. Tomita, K. Fujii, K. Masuda, Y. Mikami, K. Yazawa and H. Komaki, J. Antibiot., 57, 125 (2004); https://doi.org/10.7164/antibiotics.57.125
K. Yokoi, K. Nagaoka and T. Nakashima, Chem. Pharm. Bull., 34, 4554 (1986); https://doi.org/10.1248/cpb.34.4554
T. Tsuchida, H. Iinuma, N. Kinoshita, T. Ikeda, R. Sawa, Y. Takahashi, H. Naganawa, T. Sawa, M. Hamada and T. Takeuchi, J. Antibiot., 46, 1772 (1993); https://doi.org/10.7164/antibiotics.46.1772
L. Degennaro, P. Trinchera and R. Luisi, Chem. Rev., 114, 7881 (2014); https://doi.org/10.1021/cr400553c
Z. Yu, Z. Lu and W.D. Wulff, Synlett, 17, 2715 (2009); https://doi.org/10.1055/s-0029-1217979
P. Roth, P.G. Andersson and P. Somfai, Chem. Commun., 1752, 1752 (2002); https://doi.org/10.1039/b203932j
J. Pan, J.H. Wu, H. Zhang, X. Ren, J.P. Tan, L. Zhu, H.S. Zhang, C. Jiang and T. Wang, Angew. Chem. Int. Ed., 58, 7425 (2019); https://doi.org/10.1002/anie.201900613
N. De Kimpe, R. Verhé, L. De Buyck and N. Schamp, Recl. Trav. Chim. Pays Bas, 96, 242 (1977); https://doi.org/10.1002/recl.19770960908
Q.Q. Cheng, Z. Zhou, H. Jiang, J.H. Siitonen, D.H. Ess, X. Zhang and L. Kurti, Nat. Catal., 3, 386 (2020); https://doi.org/10.1038/s41929-020-0430-4
D.J. Gorin, N.R. Davis and F.D. Toste, J. Am. Chem. Soc., 127, 11260 (2005); https://doi.org/10.1021/ja053804t
E.T. Hennessy, R.Y. Liu, D.A. Iovan, R.A. Duncan and T.A. Betley, Chem. Sci., 5, 1526 (2014); https://doi.org/10.1039/C3SC52533C
M. Goswami, V. Lyaskovskyy, S.R. Domingos, W.J. Buma, S. Woutersen, O. Troeppner, I. Ivanovic-Burmazovic, H. Lu, X. Cui, X.P. Zhang, E.J. Reijerse, S. DeBeer, M.M. van Schooneveld, F.F. Pfaff, K. Ray and B. de Bruin, J. Am. Chem. Soc., 137, 5468 (2015); https://doi.org/10.1021/jacs.5b01197
W. Mao, Z. Zhang, D. Fehn, S.A.V. Jannuzzi, F.W. Heinemann, A. Scheurer, M. van Gastel, S. DeBeer, D. Munz and K.J. Meyer, J. Am. Chem. Soc., 145, 13650 (2023); https://doi.org/10.1021/jacs.3c01478
J.L. Jat, M.P. Paudyal, H. Gao, Q.L. Xu, M. Yousufuddin, D. Devarajan, D.H. Ess, L. Kurti and J.R. Falck, Science, 343, 61 (2014); https://doi.org/10.1126/science.1245727
G.S. Hammond and N.J. Turro, Science, 142, 1541 (1963); https://doi.org/10.1126/science.142.3599.1541
A.B. Beeler, Chem. Rev., 116, 9629 (2016); https://doi.org/10.1021/acs.chemrev.6b00378
C. Empel and R.M. Koenigs, Chem Catal., 2, 2506 (2022); https://doi.org/10.1016/j.checat.2022.09.008
S.O. Scholz, E.P. Farney, S. Kim, D.M. Bates and T.P. Yoon, Angew. Chem. Int. Ed., 55, 2239 (2016); https://doi.org/10.1002/anie.201510868
Y. Zhang, X. Dong, Y. Wu, G. Li and H. Lu, Org. Lett., 20, 4838 (2018); https://doi.org/10.1021/acs.orglett.8b01980
S. Masakado, Y. Kobayashi and Y. Takemoto, Chem. Pharm. Bull., 66, 688 (2018); https://doi.org/10.1248/cpb.c18-00198
Y. Guo, C. Pei, S. Jana and R.M. Koenigs, ACS Catal., 11, 337 (2021); https://doi.org/10.1021/acscatal.0c04564
O.S. Srivastava, V. Anand and N. Rastogi, Asian J. Org. Chem., 12, e202300415 (2023); https://doi.org/10.1002/ajoc.202300415
T. Koike and M. Akita, Inorg. Chem. Front., 1, 562 (2014); https://doi.org/10.1039/C4QI00053F
D. Dam, N.R. Lagerweij, K.M. Janmaat, K. Kok, E. Bouwman and J.D.C. Codée, J. Org. Chem., 89, 3251 (2024); https://doi.org/10.1021/acs.joc.3c02709
N. Baris, M. Draèínský, J. Tarábek, J. Filgas, P. Slavíèek, L. Ludvíková, S. Boháèová, T. Slanina, B. Klepetáøová and P. Beier, Angew. Chem. Int. Ed., 63, e202315162 (2024); https://doi.org/10.1002/anie.202315162
J.K. Mitchell, W.A. Hussain, A.H. Bansode, R.M. O’Connor and M. Parasram, J. Am. Chem. Soc., 146, 9499 (2024); https://doi.org/10.1021/jacs.3c14713
Y.D. Du, C.Y. Zhou, W.P. To, H.X. Wang and C.M. Che, Chem. Sci., 11, 4680 (2020); https://doi.org/10.1039/D0SC00784F
X. Cheng, B.G. Cai, H. Mao, J. Lu, L. Li, K. Wang and J. Xuan, Org. Lett., 23, 4109 (2021); https://doi.org/10.1021/acs.orglett.1c00979
Y. Liu, X. Dong, G. Deng and L. Zhou, Sci. China Chem., 59, 199 (2016); https://doi.org/10.1007/s11426-015-5513-8
A. Itoh, K. Matsuzawa, Y. Nagasawa, E. Yamaguchi and N. Tada, Synthesis, 48, 2845 (2016); https://doi.org/10.1055/s-0035-1561635
W. Yu, J. Chen, Y. Wei, Z. Wang and P. Xu, Chem. Commun., 54, 1948 (2018); https://doi.org/10.1039/C7CC09151F
S.B. Goud, R.L. Dhakar and S. Samanta, Chem. Asian J., 19, e202300904 (2024); https://doi.org/10.1002/asia.202300904
E. Kim, S. Choi, H. Kim and E.J. Cho, Chem. Eur. J., 19, 6209 (2013); https://doi.org/10.1002/chem.201300564
X.X. Liu, J. Jia, Z. Wang, Y.T. Zhang, J. Chen, K. Yang, C.Y. He and L. Zhao, Adv. Synth. Catal., 362, 2604 (2020); https://doi.org/10.1002/adsc.202000342
D. de Loera and M.A. Garcia-Garibay, Org. Lett., 14, 3874 (2012); https://doi.org/10.1021/ol301582n