Copyright (c) 2025 Anbukaruppuchamy S

This work is licensed under a Creative Commons Attribution 4.0 International License.
Enhanced Electrochemical Performance of Cobalt-Substituted Zinc Ferrite for High-Stability Supercapacitors
Corresponding Author(s) : S. Anbukaruppuchamy
Asian Journal of Chemistry,
Vol. 37 No. 7 (2025): Vol 37 Issue 7, 2025
Abstract
Cobalt-substituted zinc ferrite (CoxZn1-xFe2O4) nanoparticles were synthesized and studied for their structural, morphological and electrochemical properties. The XRD results confirmed that the prepared samples possess cubic spinel structure with crystallite size decreased from 31.45 nm to 26.13 nm upon cobalt substitution. FTIR and Raman spectroscopic studies validated spinel phase formation with metal-oxygen vibrations in tetrahedral and octahedral sites. The FESEM study showed agglomerated morphology and the EDX result confirmed stoichiometry. Electrochemical tests (CV, GCD, EIS, cyclic stability test) revealed improved charge storage and conductivity caused by cobalt content. Co0.5Zn0.5Fe2O4 achieved 306.2 F/g at 1 A/g and 96% capacitance retention after 4000 cycles at 10 A/g, indicating its potential as a high-performance supercapacitor electrode.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- O. Krishan and S. Suhag, Int. J. Energy Res., 43, 6171 (2019); https://doi.org/10.1002/er.4285
- R.T. Yadlapalli, R.R. Alla, R. Kandipati and A. Kotapati, J. Energy Storage, 49, 104194 (2022); https://doi.org/10.1016/j.est.2022.104194
- D.P. Dubal, N.R. Chodankar, D.H. Kim and P. Gomez-Romero, Chem. Soc. Rev., 47, 2065 (2018); https://doi.org/10.1039/C7CS00505A
- M. Mortazavi and A. Ivanov, Int. J. Adv. Manuf. Technol., 105, 4621 (2019); https://doi.org/10.1007/s00170-019-03864-2
- P.A. Shinde, Y. Seo, S. Lee, H. Kim, Q.N. Pham, Y. Won and S. Chan Jun, Chem. Eng. J., 387, 122982 (2020); https://doi.org/10.1016/j.cej.2019.122982
- P. Gaikwad, N. Tiwari, R. Kamat, S.M. Mane and S.B. Kulkarni, Mater. Sci. Eng. B, 307, 117544 (2024); https://doi.org/10.1016/j.mseb.2024.117544
- Q. Luo, P. Xu, Y. Qiu, Z. Cheng, X. Chang and H. Fan, Mater. Lett., 198, 192 (2017); https://doi.org/10.1016/j.matlet.2017.04.032
- X. Feng, Y. Huang, X. Chen, C. Wei, X. Zhang and M. Chen, J. Mater. Sci., 53, 2648 (2018); https://doi.org/10.1007/s10853-017-1735-9
- M. Saraf, K. Natarajan, A.K. Gupta, P. Kumar, R. Rajak and S.M. Mobin, Mater. Res. Express, 6, 095534 (2019); https://doi.org/10.1088/2053-1591/ab3339
- Y. Lin, J. Wang, H. Yang, L. Wang and M. Cao, Mater. Sci. Eng. B, 228, 103 (2018); https://doi.org/10.1016/j.mseb.2017.11.013
- N.M. Malima, M.D. Khan, J. Choi, R.K. Gupta, P. Mashazi, T. Nyokong and N. Revaprasadu, RSC Adv., 11, 31002 (2021); https://doi.org/10.1039/D1RA04833C
- B.J. Rani, G. Ravi, R. Yuvakkumar, V. Ganesh, S. Ravichandran, M. Thambidurai, A.P. Rajalakshmi and A. Sakunthala, Appl. Phys., A Mater. Sci. Process., 124, 511 (2018); https://doi.org/10.1007/s00339-018-1936-3
- A. Sutka and G. Mezinskis, Front. Mater. Sci., 6, 128 (2012); https://doi.org/10.1007/s11706-012-0167-3
- M. Khairy, W.A. Bayoumy, S.S. Selima and M.A. Mousa, J. Mater. Res., 35, 2652 (2020); https://doi.org/10.1557/jmr.2020.200
- N.M. Deraz and A. Alarifi, J. Anal. Appl. Pyrolysis, 94, 41 (2012); https://doi.org/10.1016/j.jaap.2011.10.004
- K.J. Oviya and P. Sivagurunathan, Asian J. Chem., 36, 2375 (2024); https://doi.org/10.14233/ajchem.2024.32404
- S. Demirel, R. Topkaya and K. Cicek, J. Mater. Sci. Mater. Electron., 34, 1 (2023); https://doi.org/10.1007/s10854-022-09392-2
- V. Augustyn, J. Come, M.A. Lowe, J.W. Kim, P.L. Taberna, S.H. Tolbert, H.D. Abruña, P. Simon and B. Dunn, Nature Mater., 12, 518 (2013); https://doi.org/10.1038/nmat3601
- S. Suresh and V. Sindhu, Ionics, 29, 843 (2023); https://doi.org/10.1007/s11581-022-04846-3
- J. Wang, J. Polleux, J. Lim and B. Dunn, J. Phys. Chem. C, 111, 14925 (2007); https://doi.org/10.1021/jp074464w
- B. Bhujun, M.T. Tan and A.S. Shanmugam, Results Phys., 7, 345 (2017); https://doi.org/10.1016/j.rinp.2016.04.010
- T. Putjuso, S. Putjuso, A. Karaphun, P. Moontragoon, I. Kotutha and E. Swatsitang, Sci. Rep., 13, 2531 (2023); https://doi.org/10.1038/s41598-023-29830-3
- L. Li, H. Bi, S. Gai, F. He, P. Gao, Y. Dai, X. Zhang, D. Yang, M. Zhang and P. Yang, Sci. Rep., 7, 43116 (2017); https://doi.org/10.1038/srep43116
- P.D. Patil, S.R. Shingte, V.C. Karade, J.H. Kim, T.D. Dongale, S.H. Mujawar, A.M. Patil and P.B. Patil, J. Energy Storage, 40, 102821 (2021); https://doi.org/10.1016/j.est.2021.102821
References
O. Krishan and S. Suhag, Int. J. Energy Res., 43, 6171 (2019); https://doi.org/10.1002/er.4285
R.T. Yadlapalli, R.R. Alla, R. Kandipati and A. Kotapati, J. Energy Storage, 49, 104194 (2022); https://doi.org/10.1016/j.est.2022.104194
D.P. Dubal, N.R. Chodankar, D.H. Kim and P. Gomez-Romero, Chem. Soc. Rev., 47, 2065 (2018); https://doi.org/10.1039/C7CS00505A
M. Mortazavi and A. Ivanov, Int. J. Adv. Manuf. Technol., 105, 4621 (2019); https://doi.org/10.1007/s00170-019-03864-2
P.A. Shinde, Y. Seo, S. Lee, H. Kim, Q.N. Pham, Y. Won and S. Chan Jun, Chem. Eng. J., 387, 122982 (2020); https://doi.org/10.1016/j.cej.2019.122982
P. Gaikwad, N. Tiwari, R. Kamat, S.M. Mane and S.B. Kulkarni, Mater. Sci. Eng. B, 307, 117544 (2024); https://doi.org/10.1016/j.mseb.2024.117544
Q. Luo, P. Xu, Y. Qiu, Z. Cheng, X. Chang and H. Fan, Mater. Lett., 198, 192 (2017); https://doi.org/10.1016/j.matlet.2017.04.032
X. Feng, Y. Huang, X. Chen, C. Wei, X. Zhang and M. Chen, J. Mater. Sci., 53, 2648 (2018); https://doi.org/10.1007/s10853-017-1735-9
M. Saraf, K. Natarajan, A.K. Gupta, P. Kumar, R. Rajak and S.M. Mobin, Mater. Res. Express, 6, 095534 (2019); https://doi.org/10.1088/2053-1591/ab3339
Y. Lin, J. Wang, H. Yang, L. Wang and M. Cao, Mater. Sci. Eng. B, 228, 103 (2018); https://doi.org/10.1016/j.mseb.2017.11.013
N.M. Malima, M.D. Khan, J. Choi, R.K. Gupta, P. Mashazi, T. Nyokong and N. Revaprasadu, RSC Adv., 11, 31002 (2021); https://doi.org/10.1039/D1RA04833C
B.J. Rani, G. Ravi, R. Yuvakkumar, V. Ganesh, S. Ravichandran, M. Thambidurai, A.P. Rajalakshmi and A. Sakunthala, Appl. Phys., A Mater. Sci. Process., 124, 511 (2018); https://doi.org/10.1007/s00339-018-1936-3
A. Sutka and G. Mezinskis, Front. Mater. Sci., 6, 128 (2012); https://doi.org/10.1007/s11706-012-0167-3
M. Khairy, W.A. Bayoumy, S.S. Selima and M.A. Mousa, J. Mater. Res., 35, 2652 (2020); https://doi.org/10.1557/jmr.2020.200
N.M. Deraz and A. Alarifi, J. Anal. Appl. Pyrolysis, 94, 41 (2012); https://doi.org/10.1016/j.jaap.2011.10.004
K.J. Oviya and P. Sivagurunathan, Asian J. Chem., 36, 2375 (2024); https://doi.org/10.14233/ajchem.2024.32404
S. Demirel, R. Topkaya and K. Cicek, J. Mater. Sci. Mater. Electron., 34, 1 (2023); https://doi.org/10.1007/s10854-022-09392-2
V. Augustyn, J. Come, M.A. Lowe, J.W. Kim, P.L. Taberna, S.H. Tolbert, H.D. Abruña, P. Simon and B. Dunn, Nature Mater., 12, 518 (2013); https://doi.org/10.1038/nmat3601
S. Suresh and V. Sindhu, Ionics, 29, 843 (2023); https://doi.org/10.1007/s11581-022-04846-3
J. Wang, J. Polleux, J. Lim and B. Dunn, J. Phys. Chem. C, 111, 14925 (2007); https://doi.org/10.1021/jp074464w
B. Bhujun, M.T. Tan and A.S. Shanmugam, Results Phys., 7, 345 (2017); https://doi.org/10.1016/j.rinp.2016.04.010
T. Putjuso, S. Putjuso, A. Karaphun, P. Moontragoon, I. Kotutha and E. Swatsitang, Sci. Rep., 13, 2531 (2023); https://doi.org/10.1038/s41598-023-29830-3
L. Li, H. Bi, S. Gai, F. He, P. Gao, Y. Dai, X. Zhang, D. Yang, M. Zhang and P. Yang, Sci. Rep., 7, 43116 (2017); https://doi.org/10.1038/srep43116
P.D. Patil, S.R. Shingte, V.C. Karade, J.H. Kim, T.D. Dongale, S.H. Mujawar, A.M. Patil and P.B. Patil, J. Energy Storage, 40, 102821 (2021); https://doi.org/10.1016/j.est.2021.102821