Copyright (c) 2025 Kirti Hooda, Anshul Singh Anshul Singh, Virender Kundu, Aman Kumar

This work is licensed under a Creative Commons Attribution 4.0 International License.
Synthesis of Magnesium/Copper Doped or co-doped ZnO as Photoanode: A Study of Optical and Structural Properties for Enhancing the Photovoltaic Properties of DSSCs
Corresponding Author(s) : Anshul Singh
Asian Journal of Chemistry,
Vol. 37 No. 7 (2025): Vol 37 Issue 7, 2025
Abstract
Pure ZnO and Cu/Mg co-doped ZnO nanoparticles were synthesized using sol-gel technique. The optical, morphological and structural characteristics of the prepared samples were thoroughly examined. The single-phase hexagonal wurtzite structure, devoid of any impurity phase, was identified by X-ray diffraction data. The effective integration of Cu2+/Mg2+ ions into the host ZnO structure is validated by XRD. To examine the morphology of the materials, field emission scanning electron microscopy was utilized. The results showed that the ZnO nanoparticles were highly agglomerated and widely distributed, with a nearly distinct crystalline character. UV-visible spectroscopy was used to analyze the optical characteristics of samples. The electrochemical characteristics of fill factor, open circuit voltage and short circuit current density were determined using J-V characterization. In dye-sensitized solar cell (DSSC), copper ions serve as a barrier layer that prevents electrons from flowing backward, hence reducing recombination. The efficiency of DSSCs improves due to reduced charge recombination. An alternative approach to optimizing photovoltaic performance involves cationic substitution of metal ions, such as Mg2+, in ZnO. This modification not only influences the positioning of the conduction band but also slightly broadens the band gap, contributing to enhanced energy conversion efficiency. The effect of Cu2+/Mg2+ doping in a ZnO-based DSSC’s efficiency was examined in the current study and the efficiency of Cu2+/Mg2+ co-doped ZnO photoanode in DSSCs were measured at 0.8140%, showing an enhancement of approximately 238% compared to the efficiency of pure ZnO-based photoanode utilized in DSSCs. An improved DSSC light harvesting efficiency is supported by all of these findings. This proves that doping ZnO nanoparticles is a good way to boost the appropriate efficiency of a solar cell application.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- B.J. van Ruijven, E. De Cian and I.S. Wing, Nat. Commun., 10, 2762 (2019); https://doi.org/10.1038/s41467-019-10399-3
- D. Tekin, H. Kiziltas and H. Ungan, J. Mol. Liq., 306, 112905 (2020); https://doi.org/10.1016/j.molliq.2020.112905
- F. Machda, T. Ogawa, H. Okumura and K.N. Ishihara, Phys. Status Solidi., A Appl. Mater. Sci., 217, 1900519 (2020); https://doi.org/10.1002/pssa.201900519
- P.F. Ji, Y. Li, F.Q. Zhou, Y.L. Song and H.C. Huang, Mater. Lett., 262, 127028 (2020); https://doi.org/10.1016/j.matlet.2019.127028
- M.K. Nazeeruddin, E. Baranoff and M. Grätzel, Sol. Energy, 85, 1172 (2011); https://doi.org/10.1016/j.solener.2011.01.018
- S. Borbón, S. Lugo, D. Pourjafari, N. Pineda Aguilar, G. Oskam and I. López, ACS Omega, 5, 10977 (2020); https://doi.org/10.1021/acsomega.0c00794
- H. Kim and A. Pique, Appl. Phys. Lett., 84, 218 (2004); https://doi.org/10.1063/1.1639515
- A.M. Awwad, M.W. Amer and M.M. Al-Aqarbeh, Chem. Int., 6, 168 (2020); https://doi.org/10.5281/zenodo.3597558
- O. Igwe and F. Nwamezie, Chem. Int., 4, 60 (2018).
- K.H. Kim, K. Utashiro, Y. Abe and M. Kawamura, Materials, 7, 2522 (2014); https://doi.org/10.3390/ma7042522
- B. Ali, M.W. Ashraf and S. Tayyaba, Energies, 12, 807 (2019); https://doi.org/10.3390/en12050807
- M.K. Basher, M.K. Hossain, R. Afaz, S. Tayyaba, M.A.R. Akand, M.T. Rahman and N.M. Eman, Results Phys., 10, 205 (2018); https://doi.org/10.1016/j.rinp.2018.05.038
- K. Keis, J. Lindgren, S.-E. Lindquist and A. Hagfeldt, Langmuir, 16, 4688 (2000); https://doi.org/10.1021/la9912702
- B. Abebe, N.K. Gupta and D. Tsegaye, RSC Adv., 14, 17338 (2024); https://doi.org/10.1039/D4RA02568G
- S. Rehman, R. Ullah, A.M. Butt and N.D. Gohar, J. Hazard. Mater., 170, 560 (2009); https://doi.org/10.1016/j.jhazmat.2009.05.064
- Y. Peng, S. Qin, W.-S. Wang and A.-W. Xu, CrystEngComm, 15, 6518 (2013); https://doi.org/10.1039/c3ce40798e
- K.C. Barick, S. Singh, M. Aslam and D. Bahadur, Micropor. Mesopor. Mater., 134, 195 (2010); https://doi.org/10.1016/j.micromeso.2010.05.026
- A.M. Toufiq, R. Hussain, A. Shah, A. Mahmood, A. Rehman, A. Khan and S. Rahman, Physica B, 604, 412731 (2021); https://doi.org/10.1016/j.physb.2020.412731
- E. Akman, J. Mol. Liq., 317, 114223 (2020); https://doi.org/10.1016/j.molliq.2020.114223
- Q. Zhang, C.S. Dandeneau, S. Candelaria, D. Liu, B.B. Garcia, X. Zhou, Y.H. Jeong and G. Cao, Chem. Mater., 22, 2427 (2010); https://doi.org/10.1021/cm9009942
- A. de Souza Gonçalves, M.R. Davolos, N. Masaki, S. Yanagida, J.R. Durrant, A. Morandeira, J.N. Freitas and A.F. Nogueira, Dalton Trans., 11, 1487 (2008); https://doi.org/10.1039/b716724e
- Y.J. Shin, J.H. Lee, J.-H. Park and N.-G. Park, Chem. Lett., 36, 1506 (2007); https://doi.org/10.1246/cl.2007.1506
- K. Prabakar, M. Son, W.-Y. Kim and H. Kim, Mater. Chem. Phys., 125, 12 (2011); https://doi.org/10.1016/j.matchemphys.2010.09.028
- A. Ohtomo, K. Tamura, M. Kawasaki, T. Makino, Y. Segawa, Z.K. Tang, G.K.L. Wong, Y. Matsumoto and H. Koinuma, Appl. Phys. Lett., 77, 2204 (2000); https://doi.org/10.1063/1.1315340
- A. Ohtomo, M. Kawasaki, T. Koida, K. Masubuchi, H. Koinuma, Y. Sakurai, Y. Yoshida, T. Yasuda and Y. Segawa, Appl. Phys. Lett., 72, 2466 (1998); https://doi.org/10.1063/1.121384
- A. Jilani, M. Abdel-wahab and A. Hammad, eds.: N. Nikitenkov, Advance Deposition Techniques for Thin Film and Coating, In: Modern Technol-ogies for Creating the Thin-film Systems and Coatings, Chap. 8, pp. 137-143, IntechOpen (2017).
- F. Aslan, A. Tumbul, A. Göktas, R. Budakoglu and I.H. Mutlu, J. Sol-Gel Sci. Technol., 80, 389 (2016); https://doi.org/10.1007/s10971-016-4131-z
- M.N.H. Mia, M.F. Pervez, M.K. Hossain, M. Reefaz-Rahman, M.J. Uddin, M.A. Al Mashud, H.K. Ghosh and M. Hoq, Results Phys., 7, 2683 (2017); https://doi.org/10.1016/j.rinp.2017.07.047
- V. Cauda, D. Pugliese, N. Garino, A. Sacco, S. Bianco, F. Bella, A. Lamberti and C. Gerbaldi, Energy, 65, 639 (2014); https://doi.org/10.1016/j.energy.2013.12.025
- N.S. Gultom, H. Abdullah and D.-H. Kuo, Appl. Catal. B, 272, 118985 (2020); https://doi.org/10.1016/j.apcatb.2020.118985
- H. Esgin, Y. Caglar and M. Caglar, J. Alloys Compd., 890, 161848 (2021); https://doi.org/10.1016/j.jallcom.2021.161848
- M. Mujahid and O.A. Al-Hartomy, Mater. Res. Innov., 27, 194 (2023); https://doi.org/10.1080/14328917.2022.2113270
- M. Amjad, M.I. Khan, N. Alwadai, M. Irfan, Ikram-ul-Haq, H. Albalawi, A.H. Almuqrin, M.M. Almoneef and M. Iqbal, Nanomaterials, 12, 1057 (2022); https://doi.org/10.3390/nano12071057
- J. Chauhan, N. Srivastav, A. Dugaya and D. Pandey, MOJ Polym. Sci., 1, 26 (2017).
- B.D. Viezbicke, S. Patel, B.E. Davis and D.P. Birnie III, Phys. Status Solidi, B Basic Res., 252, 1700 (2015); https://doi.org/10.1002/pssb.201552007
- R. Mohan, K. Krishnamoorthy and S.-J. Kim, Solid State Commun., 152, 375 (2012); https://doi.org/10.1016/j.ssc.2011.12.008
- K.H. Lee, R. Farheen, Z. Arshad, M. Ali, H. Hassan, M. Alshareef, A.Dahshan and U. Khalid, RSC Adv., 14, 15391 (2024); https://doi.org/10.1039/D4RA01544D
- Y.Q. Wang, J. Yang, Y.C. Li, T.T. Jiang, J.Y. Chen and J.X. Wang, Mater. Chem. Phys., 153, 266 (2015); https://doi.org/10.1016/j.matchemphys.2015.01.013
- C.P. Dietrich, M. Brandt, M. Lange, J. Kupper, T. Böntgen, H. von Wenckstern and M. Grundmann, J. Appl. Phys., 109, 013712 (2011); https://doi.org/10.1063/1.3530610
- A. Das, R.R. Wary and R.G. Nair, Solid State Sci., 104, 106290 (2020); https://doi.org/10.1016/j.solidstatesciences.2020.106290
- A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo and H. Pettersson, Chem. Rev., 110, 6595 (2010); https://doi.org/10.1021/cr900356p
- K.R. Aneesiya and C. Louis, J. Alloys Compd., 829, 154497 (2020); https://doi.org/10.1016/j.jallcom.2020.154497
References
B.J. van Ruijven, E. De Cian and I.S. Wing, Nat. Commun., 10, 2762 (2019); https://doi.org/10.1038/s41467-019-10399-3
D. Tekin, H. Kiziltas and H. Ungan, J. Mol. Liq., 306, 112905 (2020); https://doi.org/10.1016/j.molliq.2020.112905
F. Machda, T. Ogawa, H. Okumura and K.N. Ishihara, Phys. Status Solidi., A Appl. Mater. Sci., 217, 1900519 (2020); https://doi.org/10.1002/pssa.201900519
P.F. Ji, Y. Li, F.Q. Zhou, Y.L. Song and H.C. Huang, Mater. Lett., 262, 127028 (2020); https://doi.org/10.1016/j.matlet.2019.127028
M.K. Nazeeruddin, E. Baranoff and M. Grätzel, Sol. Energy, 85, 1172 (2011); https://doi.org/10.1016/j.solener.2011.01.018
S. Borbón, S. Lugo, D. Pourjafari, N. Pineda Aguilar, G. Oskam and I. López, ACS Omega, 5, 10977 (2020); https://doi.org/10.1021/acsomega.0c00794
H. Kim and A. Pique, Appl. Phys. Lett., 84, 218 (2004); https://doi.org/10.1063/1.1639515
A.M. Awwad, M.W. Amer and M.M. Al-Aqarbeh, Chem. Int., 6, 168 (2020); https://doi.org/10.5281/zenodo.3597558
O. Igwe and F. Nwamezie, Chem. Int., 4, 60 (2018).
K.H. Kim, K. Utashiro, Y. Abe and M. Kawamura, Materials, 7, 2522 (2014); https://doi.org/10.3390/ma7042522
B. Ali, M.W. Ashraf and S. Tayyaba, Energies, 12, 807 (2019); https://doi.org/10.3390/en12050807
M.K. Basher, M.K. Hossain, R. Afaz, S. Tayyaba, M.A.R. Akand, M.T. Rahman and N.M. Eman, Results Phys., 10, 205 (2018); https://doi.org/10.1016/j.rinp.2018.05.038
K. Keis, J. Lindgren, S.-E. Lindquist and A. Hagfeldt, Langmuir, 16, 4688 (2000); https://doi.org/10.1021/la9912702
B. Abebe, N.K. Gupta and D. Tsegaye, RSC Adv., 14, 17338 (2024); https://doi.org/10.1039/D4RA02568G
S. Rehman, R. Ullah, A.M. Butt and N.D. Gohar, J. Hazard. Mater., 170, 560 (2009); https://doi.org/10.1016/j.jhazmat.2009.05.064
Y. Peng, S. Qin, W.-S. Wang and A.-W. Xu, CrystEngComm, 15, 6518 (2013); https://doi.org/10.1039/c3ce40798e
K.C. Barick, S. Singh, M. Aslam and D. Bahadur, Micropor. Mesopor. Mater., 134, 195 (2010); https://doi.org/10.1016/j.micromeso.2010.05.026
A.M. Toufiq, R. Hussain, A. Shah, A. Mahmood, A. Rehman, A. Khan and S. Rahman, Physica B, 604, 412731 (2021); https://doi.org/10.1016/j.physb.2020.412731
E. Akman, J. Mol. Liq., 317, 114223 (2020); https://doi.org/10.1016/j.molliq.2020.114223
Q. Zhang, C.S. Dandeneau, S. Candelaria, D. Liu, B.B. Garcia, X. Zhou, Y.H. Jeong and G. Cao, Chem. Mater., 22, 2427 (2010); https://doi.org/10.1021/cm9009942
A. de Souza Gonçalves, M.R. Davolos, N. Masaki, S. Yanagida, J.R. Durrant, A. Morandeira, J.N. Freitas and A.F. Nogueira, Dalton Trans., 11, 1487 (2008); https://doi.org/10.1039/b716724e
Y.J. Shin, J.H. Lee, J.-H. Park and N.-G. Park, Chem. Lett., 36, 1506 (2007); https://doi.org/10.1246/cl.2007.1506
K. Prabakar, M. Son, W.-Y. Kim and H. Kim, Mater. Chem. Phys., 125, 12 (2011); https://doi.org/10.1016/j.matchemphys.2010.09.028
A. Ohtomo, K. Tamura, M. Kawasaki, T. Makino, Y. Segawa, Z.K. Tang, G.K.L. Wong, Y. Matsumoto and H. Koinuma, Appl. Phys. Lett., 77, 2204 (2000); https://doi.org/10.1063/1.1315340
A. Ohtomo, M. Kawasaki, T. Koida, K. Masubuchi, H. Koinuma, Y. Sakurai, Y. Yoshida, T. Yasuda and Y. Segawa, Appl. Phys. Lett., 72, 2466 (1998); https://doi.org/10.1063/1.121384
A. Jilani, M. Abdel-wahab and A. Hammad, eds.: N. Nikitenkov, Advance Deposition Techniques for Thin Film and Coating, In: Modern Technol-ogies for Creating the Thin-film Systems and Coatings, Chap. 8, pp. 137-143, IntechOpen (2017).
F. Aslan, A. Tumbul, A. Göktas, R. Budakoglu and I.H. Mutlu, J. Sol-Gel Sci. Technol., 80, 389 (2016); https://doi.org/10.1007/s10971-016-4131-z
M.N.H. Mia, M.F. Pervez, M.K. Hossain, M. Reefaz-Rahman, M.J. Uddin, M.A. Al Mashud, H.K. Ghosh and M. Hoq, Results Phys., 7, 2683 (2017); https://doi.org/10.1016/j.rinp.2017.07.047
V. Cauda, D. Pugliese, N. Garino, A. Sacco, S. Bianco, F. Bella, A. Lamberti and C. Gerbaldi, Energy, 65, 639 (2014); https://doi.org/10.1016/j.energy.2013.12.025
N.S. Gultom, H. Abdullah and D.-H. Kuo, Appl. Catal. B, 272, 118985 (2020); https://doi.org/10.1016/j.apcatb.2020.118985
H. Esgin, Y. Caglar and M. Caglar, J. Alloys Compd., 890, 161848 (2021); https://doi.org/10.1016/j.jallcom.2021.161848
M. Mujahid and O.A. Al-Hartomy, Mater. Res. Innov., 27, 194 (2023); https://doi.org/10.1080/14328917.2022.2113270
M. Amjad, M.I. Khan, N. Alwadai, M. Irfan, Ikram-ul-Haq, H. Albalawi, A.H. Almuqrin, M.M. Almoneef and M. Iqbal, Nanomaterials, 12, 1057 (2022); https://doi.org/10.3390/nano12071057
J. Chauhan, N. Srivastav, A. Dugaya and D. Pandey, MOJ Polym. Sci., 1, 26 (2017).
B.D. Viezbicke, S. Patel, B.E. Davis and D.P. Birnie III, Phys. Status Solidi, B Basic Res., 252, 1700 (2015); https://doi.org/10.1002/pssb.201552007
R. Mohan, K. Krishnamoorthy and S.-J. Kim, Solid State Commun., 152, 375 (2012); https://doi.org/10.1016/j.ssc.2011.12.008
K.H. Lee, R. Farheen, Z. Arshad, M. Ali, H. Hassan, M. Alshareef, A.Dahshan and U. Khalid, RSC Adv., 14, 15391 (2024); https://doi.org/10.1039/D4RA01544D
Y.Q. Wang, J. Yang, Y.C. Li, T.T. Jiang, J.Y. Chen and J.X. Wang, Mater. Chem. Phys., 153, 266 (2015); https://doi.org/10.1016/j.matchemphys.2015.01.013
C.P. Dietrich, M. Brandt, M. Lange, J. Kupper, T. Böntgen, H. von Wenckstern and M. Grundmann, J. Appl. Phys., 109, 013712 (2011); https://doi.org/10.1063/1.3530610
A. Das, R.R. Wary and R.G. Nair, Solid State Sci., 104, 106290 (2020); https://doi.org/10.1016/j.solidstatesciences.2020.106290
A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo and H. Pettersson, Chem. Rev., 110, 6595 (2010); https://doi.org/10.1021/cr900356p
K.R. Aneesiya and C. Louis, J. Alloys Compd., 829, 154497 (2020); https://doi.org/10.1016/j.jallcom.2020.154497