Copyright (c) 2025 Cimanga, Rajasekhar VSR Pullabhotla

This work is licensed under a Creative Commons Attribution 4.0 International License.
Microplastics Degradation in Water: A Review of Advanced Oxidative Processes and Ozonation for Effective Treatment
Corresponding Author(s) : V.S.R. Rajasekhar Pullabhotla
Asian Journal of Chemistry,
Vol. 37 No. 7 (2025): Vol 37 Issue 7, 2025
Abstract
In the backdrop of the increasing microplastics (MPs) production and the global concern into the emergence of pollution, a pressing need to develop extensive implementations of the advanced oxidative processes (AOPs) is in the rise. In line with this, the challenges and competencies of MPs degradation techniques including the identification and quantification technologies used in drinking water and wastewater treatment procedures were analyzed. Assessment of the MPs degradation techniques has shown that photocatalytic processes, Fenton systems and the electrochemical oxidation processes present more challenges than ozone-based technology. Given a much greater solubility of ozone in water that surpasses oxygen, its vigorous reactive properties and the ozone reliable generation, we propose a steady application of ozonation reactions more especially in the disinfection of drinking water, industrial wastewater and river water pharmaceuticals pollution treatment.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- H. Du, Y. Xie and J. Wang, J. Hazard. Mater., 418, 126377 (2021); https://doi.org/10.1016/j.jhazmat.2021.126377
- K. Hu, P. Zhou, Y. Yang, T. Hall, G. Nie, Y. Yao, X. Duan and X. Wang, ACS EST Eng., 2, 110 (2022); https://doi.org/10.1021/acsestengg.1c00323
- P.R. Sutcar, R.D. Gadewar and V.P. Dhulop, J. Hazard. Mater. Adv., 11, 100343 (2023); https://doi.org/10.1016/j.hazadv.2023.100343
- K. Hu, W. Tian, Y. Yang, G. Nie, P. Zhou, Y. Wang, X. Duan and S. Wang, Water Res., 198, 117144 (2021); https://doi.org/10.1016/j.watres.2021.117144
- M.R. Karimi Estahbanati, M. Kiendrebeogo, A. Khosravanipour Mostafazadeh, P. Drogui and R.D. Tyagi, Mar. Pollut. Bull., 168, 112374 (2021); https://doi.org/10.1016/j.marpolbul.2021.112374
- T.A. Lastovina and A.P. Budnyk, J. Water Process Eng., 43, 102209 (2021); https://doi.org/10.1016/j.jwpe.2021.102209
- T.-H. Pham, H.-T. Do, L.-A. Phan Thi, P. Singh, P. Raizada, J. Chi-Sheng Wu and V.-H. Nguyen, Chemosphere, 267, 129275 (2021); https://doi.org/10.1016/j.chemosphere.2020.129275
- S.L. Dhali, D. Parida, B. Kumar and K. Bala, Biotechnol. Sust. Mater., 1, 11 (2024); https://doi.org/10.1186/s44316-024-00011-0
- M. Mishra and D.M. Chun, Appl. Catal. A Gen., 498, 126 (2015); https://doi.org/10.1016/j.apcata.2015.03.023
- W. Hamd, E.A. Daher, T.S. Tofa and J. Dutta, Front. Mar. Sci., 9, 885614 (2022); https://doi.org/10.3389/fmars.2022.885614
- P.K. Singh, A. Singh, A.K. Srivastava, R. Chauhan, R.K. Basniwal and A. Chauhan, Water Supply, 25, 249 (2025); https://doi.org/10.2166/ws.2025.009
- A.R. Ribeiro, P.M.L. Castro and M.E. Tiritan, eds. E. Lichtfouse, R. Didier and J. Schwarzbauer, Environmental Fate of Chiral Pharmaceuticals: Determination, Degradation and Toxicity, In: Envirnmental Chemistry for Sustainable World, Springer Nature, vol 2, pp. 3-45 (2022).
- Y. Gao, B. Liu, Y. Dang, A. Yu, H. Ye, Y. Zhang and L. Kog, Glob. NEST J., 26, 05606 (2024).
- C. Maddison, C.I. Sathish, D. Lakshmi, O. Wayne and T. Palanisami, npj Mater. Degrad., 7, 59 (2023); https://doi.org/10.1038/s41529-023-00377-y
- M. Shen, B. Song, C. Zhou, T. Hu, G. Zeng and Y. Zhang, Sci. Total Environ., 842, 156723 (2022); https://doi.org/10.1016/j.scitotenv.2022.156723
- C.N. Reddy, P. Kallem, K.V.S.S.N. Mounika, A. Muqeet, J.C.J. Raj, C.V.S. Aishwarya, R.K. Gupta, V. Polisetti, B. Mishra, R. Yadavalli, S.K. Mandal, M.S. Hedenqvist and F. Banat, Polym. Test., 128, 108223 (2023); https://doi.org/10.1016/j.polymertesting.2023.108223
- E.M. Kinyua, G.W.A. Nyakairu, E. Tebandeke and O.N. Udume, Adv. Environ. Eng. Res., 5, 1 (2023).
- M. Revel, A. Châtel and C. Mouneyrac, Curr. Opin. Environ. Sci. Health, 1, 17 (2018); https://doi.org/10.1016/j.coesh.2017.10.003
- P. Zhang, P. Huang, H. Sun, J. Ma and B. Li, Environ. Pollut., 257, 113525 (2020); https://doi.org/10.1016/j.envpol.2019.113525
- X. Liu, P. Sun, G. Qu, J. Jing, T. Zhang, H. Shi and Y. Zhao, J. Hazard. Mater., 407, 124836 (2021); https://doi.org/10.1016/j.jhazmat.2020.124836
- I.A. Ricardo, E.A. Alberto, A.H. Silva Júnior, D.L.P. Macuvele, N. Padoin, C. Soares, H. Gracher Riella, M.C.V.M. Starling and A.G. Trovó, Chem. Eng. J., 424, 130282 (2021); https://doi.org/10.1016/j.cej.2021.130282
- X. Wang, S.H. Teo, M.R. Shamsuddin and N. Wid, Water Air Soil Pollut., 236, 30 (2025); https://doi.org/10.1007/s11270-024-07669-2
- J. Völker, M. Stapf, U. Miehe and M. Wagner, Environ. Sci. Technol., 53, 7215 (2019); https://doi.org/10.1021/acs.est.9b00570
- S. Magni, A. Binelli, L. Pittura, C.G. Avio, C. Della Torre, C.C. Parenti, S. Gorbi and F. Regoli, Sci. Total Environ., 652, 602 (2019); https://doi.org/10.1016/j.scitotenv.2018.10.269
- D. Sol, A. Laca, A. Laca and M. Díaz, Appl. Sci., 11, 10109 (2021); https://doi.org/10.3390/app112110109
- T. Gomes de Aragão Belé, T. F. Neves, J. Cristale, P. Prediger, M. Constapel and R. F. Dantas, J. Water Process Eng., 41, 102072 (2021); https://doi.org/10.1016/j.jwpe.2021.102072
- D. Amelia, E.F. Karamah, M. Mahardika, E. Syafri, S.M. Rangappa, S. Sieng Chin and M. Asrofi, Mater. Today, 52, 2501 (2022); https://doi.org/10.1016/j.matpr.2021.10.438
- S. Kim, A. Sin, H. Nam, Y. Park, H. Lee and C. Han, Chem. Eng. J. Adv., 9, 100213 (2022); https://doi.org/10.1016/j.ceja.2021.100213
- D. Elkhatib and V. Oyanedel-Craver, Environ. Sci. Technol., 54, 7037 (2020); https://doi.org/10.1021/acs.est.9b06672
- Z. Piao, A.A. Agyei Boakye and Y. Yao, Nat. Chem. Eng., 1, 661 (2024); https://doi.org/10.1038/s44286-024-00127-0
- G. Xu, H. Cheng, R. Jones, Y. Feng, K. Gong, K. Li, X. Fang, M.A. Tahir, V.K. Valev and L. Zhang, Environ. Sci. Technol., 54, 15594 (2020); https://doi.org/10.1021/acs.est.0c02317
- T.S. Tofa, F. Ye, K.L. Kunjali and J. Dutta, Catalysts, 9, 819 (2019); https://doi.org/10.3390/catal9100819
- C.E. Carraher, Carraher’s Polymer Chemistry, Taylor and Francis Group, Florida, edn. 10, p. 765 (2018).
- W. Liang, Y. Luo, S. Song, X. Dong and X. Yu, Polym. Degrad. Stab., 98, 1754 (2013); https://doi.org/10.1016/j.polymdegradstab.2013.05.027
- T.E. Motaung, A.S. Luyt, F. Bondioli, M. Messori, M.L. Saladino, A. Spinella, G. Nasillo and E. Caponetti, Polym. Degrad. Stab., 97, 1325 (2012); https://doi.org/10.1016/j.polymdegradstab.2012.05.022
- Y. Huang, X. Qing, W. Wang, G. Han and J. Wang, TrAC Trends Anal. Chem., 125, 115821 (2020); https://doi.org/10.1016/j.trac.2020.115821
- J.N. Möller, M.G.J. Löder and C. Laforsch, Environ. Sci. Technol., 54, 2078 (2020); https://doi.org/10.1021/acs.est.9b04618
- J.U. Izunobi and C.L. Higginbotham, J. Chem. Educ., 88, 1098 (2011); https://doi.org/10.1021/ed100461v
- Y. Deng and R. Zhao, Curr. Pollut. Rep., 1, 167 (2015); https://doi.org/10.1007/s40726-015-0015-z
- S. Khan, X. He, H.M. Khan, D. Boccelli and D.D. Dionysiou, J. Photochem. Photobiol. Chem., 316, 37 (2016); https://doi.org/10.1016/j.jphotochem.2015.10.004
- X. Zhao, J. Jiang, S. Pang, C. Guan, J. Li, Z. Wang, J. Ma and C. Luo, Chemosphere, 221, 270 (2019); https://doi.org/10.1016/j.chemosphere.2018.12.162
- R.C. Pawar and C.S. Lee, Heterogeneous Nanocomposite – Photocatalysis for Water Purification, William Andrew, Oxford, UK, pp 100 (2015).
- A.S. Mohamed, M.R. Abukkhadra, E.A. Abdallah, A.M. El-Sherbeeny and R.K. Mahmoud, J. Photochem. Photobiol. Chem., 392, 112434 (2020); https://doi.org/10.1016/j.jphotochem.2020.112434
- D.O. Adekoya, M. Tahir and N.A.S. Amin, J. CO2 Util., 18, 261 (2017); https://doi.org/10.1016/j.jcou.2017.02.004.
- P.T. Lum, K.Y. Foo, N.A. Zakaria and P. Palaniandy, Mater. Chem. Phys., 241, 122405 (2020); https://doi.org/10.1016/j.matchemphys.2019.122405
- A. Saravanan, P.S. Kumar, D.-V.N. Vo, P.R. Yaashikaa, S. Karishma, S. Jeevanantham, B. Gayathri and V.D. Bharathi, Environ. Chem. Lett., 19, 441 (2021); https://doi.org/10.1007/s10311-020-01077-8
- I. Nabi, K. Li, H. Chang, T. Wang, Y. Liu, S. Ajmal, Y. Yang, Y. Feng and L. Zhang, iScience, 23, 101326 (2020); https://doi.org/10.1016/j.isci.2020.101326
- M.H. Fadli, M. Ibadurrohman and S. Slamet, IOP Conf. Ser.: Mater. Sci. Eng.., 1011, 012055 (2021); https://doi.org/10.1088/1757-899X/1011/1/012055
- G. Liu, S. Liao, D. Zhu, Y. Hua and W. Zhou, Chem. Eng. J., 213, 286 (2012); https://doi.org/10.1016/j.cej.2012.09.105
- M.C. Ariza-Tarazona, J.F. Villarreal-Chiu, V. Barbieri, C. Siligardi and E.I. Cedillo-Gonzalez, Ceram. Int., 45, 9618 (2019); https://doi.org/10.1016/j.ceramint.2018.10.208
- M.C. Ariza-Tarazona, J.F. Villarreal-Chiu, J.M. Hernandez-Lopez, J.R. De la Rosa, V. Barbieri, C. Siligardi and E.I. Cedillo-Gonzalez, J. Hazard. Mater., 395, 122633 (2020); https://doi.org/10.1016/j.jhazmat.2020.122632
- F. Miao, Y. Liu, M. Gao, X. Yu, P. Xiao, M. Wang, S. Wang and X. Wang, J. Hazard. Mater., 399, 123023 (2020); https://doi.org/10.1016/j.jhazmat.2020.123023
- A.D. Vital-Grappin, M.C. Ariza-Tarazona, V.M. Luna-Hernandez, J.F. Villarreal-Chiu, J.M. Hernandez-Lopez and C. Siligardi, Polym. J., 13, 999 (2021); https://doi.org/10.3390/polym13070999
- B.E. Llorente-Garcia, J.M. Hernandez-Lopez, A.A Zaldivar-Cadena, C. Siligardi and E.I. Cedillo-Gonzalez, Coatings, 10, 658 (2020); https://doi.org/10.3390/coatings10070658
- W.S. Hamd and J. Dutta, “Nanomaterials for the detection and removal of wastewater pollutants”, ed. B. Bonelli, F.S. Freyria, I. Rossetti and R. Sethi, 2020, chap. 1, Oxford Cambridge.
- S. Garcia-Seguna and E. Brillas, Appl. Catal., 194, 206980 (2024); https://doi.org/10.1016/j.apcato.2024.206980
- J. Cao, J. Li, B. Yang, Z. Chen, A.R. Mahjoub and M. Xing, Cell Reports Phys. Sci., 5, 101966 (2024); https://doi.org/10.1016/j.xcrp.2024.101966
- X. Yang, X. Zeng, H. Chen, L. Xin, J. Pan, H. Ji and K. Cheng, Chem. Eng. J., 483, 148697 (2024); https://doi.org/10.1016/j.cej.2024.148697
- A.J. Luna, O. Chiavone-Filho, A. Machulek Jr., J.E.F. de Moraes and C.A.O. Nascimento, J. Environ. Manage., 111, 10 (2012); https://doi.org/10.1016/j.jenvman.2012.06.014
- T. Wang, Y. Bai, W. Si, W. Mao, Y. Gao and S. Liu, J. Photochem. Photobiol. Chem., 404, 112856 (2021); https://doi.org/10.1016/j.jphotochem.2020.112856
- G.Y. Yew, X. Tan, K.Y. Chew, J.S. Chang, Y. Tao, N. Jiang and P.L. Show, Chem. Eng. J., 408, 127264 (2021); https://doi.org/10.1016/j.cej.2020.127264
- J. Lin, K. Hu, Y. Wang, W. Tian, T. Hall, X. Duan, H. Sun, H. Zhang, E. Cortés and S. Wang, Nat. Commun., 15, 8769 (2024); https://doi.org/10.1038/s41467-024-53055-1
- O. Dia, P. Drogui, R. Dubé and G. Buelna, J. Water Sci., 29, 1 (2016); https://doi.org/10.7202/1035717ar
- P. Brosler, A.V. Girão, R.F. Silva, J. Tedim and F.J. Oliveira, Environments, 10, 15 (2023); https://doi.org/10.3390/environments10020015
- D. Maharana, Z. Xu, J. Niu and N.N. Rao, Chemosphere, 136, 145 (2015); https://doi.org/10.1016/j.chemosphere.2015.04.100
- M. Kiendrebeogo, M.R. Karimi Estahbanati, A. Khosravanipour Mostafazadeh, P. Drogui and R.D. Tyagi, Environ. Pollut., 269, 116168 (2021); https://doi.org/10.1016/j.envpol.2020.116168
- H. Li, Y. Du, X. Shen, X. Kuang, J. Zhu and H. Wang, Int. J. Electrochem. Sci., 17, 201121 (2022); https://doi.org/10.20964/2022.11.01
- N.H. Luan, Y.T. Yang and C.F. Chang, Sustain. Environ. Res., 32, 13 (2022); https://doi.org/10.1186/s42834-022-00122-1
- J. Lu, R. Hou, Y. Wang, L. Zhou and Y. Yuan, Water Res., 226, 119277 (2022); https://doi.org/10.1016/j.watres.2022.119277
- S. Oh and E.E. Stache, Chem. Soc. Rev., 53, 7309 (2024); https://doi.org/10.1039/D4CS00407H
- R.S. Weber, Curr. Opin. Electrochem., 46, 101493 (2024); https://doi.org/10.1016/j.coelec.2024.101493
- Y. Ouarda, B. Tiwari, A. Azais, M.A. Vaudreuil, S.D. Ndiaye, P. Drogui, R.D. Tyagi, S. Sauvé, M. Desrosiers, G. Buelna and R. Dubé, Chemosphere, 193, 160 (2018); https://doi.org/10.1016/j.chemosphere.2017.11.010
- Z. Frontistis, M. Antonopoulou, D. Venieri, I. Konstantinou and D. Mantzavinos, J. Environ. Manage., 195, 100 (2017); https://doi.org/10.1016/j.jenvman.2016.04.035
- F.E. Durán, D.M. de Araújo, C. do Nascimento Brito, E.V. Santos, S.O. Ganiyu and C.A. Martínez-Huitle, J. Electroanal. Chem., 818, 216 (2018); https://doi.org/10.1016/j.jelechem.2018.04.029
- C. Wei, F. Zhang, Y. Hu, F. Fang and H. Wu, Rev. Chem. Eng., 33, 1 (2016); https://doi.org/10.1515/revce-2016-0008
- Y. Gao, Y. Duan, W. Fan, T. Guo, M. Huo, W. Yang, S. Zhu and W. An, Environ. Sci. Pollut. Res. Int., 26, 21915 (2019); https://doi.org/10.1007/s11356-019-05554-8
- A.N. Fitri, D. Amelia and E.F. Karamah, IOP Conf. Ser.: Mater. Sci. Eng., 1173, 012017 (2021); https://doi.org/10.1088/1757-899X/1173/1/012017
- A. Kalemos and A. Mavridis, J. Chem. Phys., 129, 0543121 (2008); https://doi.org/10.1063/1.2960629
- V.S.R. Pullabhotla Rajasekhar, Ph.D. Thesis, Scope of Microporous and Mesoporous Molecular Sieves in the Oxidation of Higher Alkanes with Ozone, University of Kwazulu – Natal, Durban, South Africa (2008).
- Z.S. Ncanana and V.S.R.R. Pullabhotla, Catal. Lett., 148, 1535 (2018); https://doi.org/10.1007/s10562-018-2360-1
- N. Lekše, T. Griessler Bulc and A. Žgajnar Gotvajn, Ozone Sci. Eng., 46, 255 (2024); https://doi.org/10.1080/01919512.2024.2332286
- H. Tomiyasu, H. Fukutomi and G. Gordon, Inorg. Chem., 24, 2962 (1985); https://doi.org/10.1021/ic00213a018
- J. Staehelin and J. Hoigné, Environ. Sci. Technol., 19, 1206 (1985); https://doi.org/10.1021/es00142a012
- J. Hoigné and H. Bader, Water Res., 10, 377 (1976); https://doi.org/10.1016/0043-1354(76)90055-5
- J. Hoigné and H. Bader, Ozone Sci. Eng., 1, 73 (1979); https://doi.org/10.1080/01919517908550834
- J. Hoigné and H. Bader, Water Res., 17, 173 (1983); https://doi.org/10.1016/0043-1354(83)90098-2
- Y. Pi, J. Schumacher and M. Jekel, Water Res., 39, 83 (2005); https://doi.org/10.1016/j.watres.2004.09.004
- R. Lee and M.L. Coote, Phys. Chem. Chem. Phys., 18, 24663 (2016); https://doi.org/10.1039/C6CP05064F
References
H. Du, Y. Xie and J. Wang, J. Hazard. Mater., 418, 126377 (2021); https://doi.org/10.1016/j.jhazmat.2021.126377
K. Hu, P. Zhou, Y. Yang, T. Hall, G. Nie, Y. Yao, X. Duan and X. Wang, ACS EST Eng., 2, 110 (2022); https://doi.org/10.1021/acsestengg.1c00323
P.R. Sutcar, R.D. Gadewar and V.P. Dhulop, J. Hazard. Mater. Adv., 11, 100343 (2023); https://doi.org/10.1016/j.hazadv.2023.100343
K. Hu, W. Tian, Y. Yang, G. Nie, P. Zhou, Y. Wang, X. Duan and S. Wang, Water Res., 198, 117144 (2021); https://doi.org/10.1016/j.watres.2021.117144
M.R. Karimi Estahbanati, M. Kiendrebeogo, A. Khosravanipour Mostafazadeh, P. Drogui and R.D. Tyagi, Mar. Pollut. Bull., 168, 112374 (2021); https://doi.org/10.1016/j.marpolbul.2021.112374
T.A. Lastovina and A.P. Budnyk, J. Water Process Eng., 43, 102209 (2021); https://doi.org/10.1016/j.jwpe.2021.102209
T.-H. Pham, H.-T. Do, L.-A. Phan Thi, P. Singh, P. Raizada, J. Chi-Sheng Wu and V.-H. Nguyen, Chemosphere, 267, 129275 (2021); https://doi.org/10.1016/j.chemosphere.2020.129275
S.L. Dhali, D. Parida, B. Kumar and K. Bala, Biotechnol. Sust. Mater., 1, 11 (2024); https://doi.org/10.1186/s44316-024-00011-0
M. Mishra and D.M. Chun, Appl. Catal. A Gen., 498, 126 (2015); https://doi.org/10.1016/j.apcata.2015.03.023
W. Hamd, E.A. Daher, T.S. Tofa and J. Dutta, Front. Mar. Sci., 9, 885614 (2022); https://doi.org/10.3389/fmars.2022.885614
P.K. Singh, A. Singh, A.K. Srivastava, R. Chauhan, R.K. Basniwal and A. Chauhan, Water Supply, 25, 249 (2025); https://doi.org/10.2166/ws.2025.009
A.R. Ribeiro, P.M.L. Castro and M.E. Tiritan, eds. E. Lichtfouse, R. Didier and J. Schwarzbauer, Environmental Fate of Chiral Pharmaceuticals: Determination, Degradation and Toxicity, In: Envirnmental Chemistry for Sustainable World, Springer Nature, vol 2, pp. 3-45 (2022).
Y. Gao, B. Liu, Y. Dang, A. Yu, H. Ye, Y. Zhang and L. Kog, Glob. NEST J., 26, 05606 (2024).
C. Maddison, C.I. Sathish, D. Lakshmi, O. Wayne and T. Palanisami, npj Mater. Degrad., 7, 59 (2023); https://doi.org/10.1038/s41529-023-00377-y
M. Shen, B. Song, C. Zhou, T. Hu, G. Zeng and Y. Zhang, Sci. Total Environ., 842, 156723 (2022); https://doi.org/10.1016/j.scitotenv.2022.156723
C.N. Reddy, P. Kallem, K.V.S.S.N. Mounika, A. Muqeet, J.C.J. Raj, C.V.S. Aishwarya, R.K. Gupta, V. Polisetti, B. Mishra, R. Yadavalli, S.K. Mandal, M.S. Hedenqvist and F. Banat, Polym. Test., 128, 108223 (2023); https://doi.org/10.1016/j.polymertesting.2023.108223
E.M. Kinyua, G.W.A. Nyakairu, E. Tebandeke and O.N. Udume, Adv. Environ. Eng. Res., 5, 1 (2023).
M. Revel, A. Châtel and C. Mouneyrac, Curr. Opin. Environ. Sci. Health, 1, 17 (2018); https://doi.org/10.1016/j.coesh.2017.10.003
P. Zhang, P. Huang, H. Sun, J. Ma and B. Li, Environ. Pollut., 257, 113525 (2020); https://doi.org/10.1016/j.envpol.2019.113525
X. Liu, P. Sun, G. Qu, J. Jing, T. Zhang, H. Shi and Y. Zhao, J. Hazard. Mater., 407, 124836 (2021); https://doi.org/10.1016/j.jhazmat.2020.124836
I.A. Ricardo, E.A. Alberto, A.H. Silva Júnior, D.L.P. Macuvele, N. Padoin, C. Soares, H. Gracher Riella, M.C.V.M. Starling and A.G. Trovó, Chem. Eng. J., 424, 130282 (2021); https://doi.org/10.1016/j.cej.2021.130282
X. Wang, S.H. Teo, M.R. Shamsuddin and N. Wid, Water Air Soil Pollut., 236, 30 (2025); https://doi.org/10.1007/s11270-024-07669-2
J. Völker, M. Stapf, U. Miehe and M. Wagner, Environ. Sci. Technol., 53, 7215 (2019); https://doi.org/10.1021/acs.est.9b00570
S. Magni, A. Binelli, L. Pittura, C.G. Avio, C. Della Torre, C.C. Parenti, S. Gorbi and F. Regoli, Sci. Total Environ., 652, 602 (2019); https://doi.org/10.1016/j.scitotenv.2018.10.269
D. Sol, A. Laca, A. Laca and M. Díaz, Appl. Sci., 11, 10109 (2021); https://doi.org/10.3390/app112110109
T. Gomes de Aragão Belé, T. F. Neves, J. Cristale, P. Prediger, M. Constapel and R. F. Dantas, J. Water Process Eng., 41, 102072 (2021); https://doi.org/10.1016/j.jwpe.2021.102072
D. Amelia, E.F. Karamah, M. Mahardika, E. Syafri, S.M. Rangappa, S. Sieng Chin and M. Asrofi, Mater. Today, 52, 2501 (2022); https://doi.org/10.1016/j.matpr.2021.10.438
S. Kim, A. Sin, H. Nam, Y. Park, H. Lee and C. Han, Chem. Eng. J. Adv., 9, 100213 (2022); https://doi.org/10.1016/j.ceja.2021.100213
D. Elkhatib and V. Oyanedel-Craver, Environ. Sci. Technol., 54, 7037 (2020); https://doi.org/10.1021/acs.est.9b06672
Z. Piao, A.A. Agyei Boakye and Y. Yao, Nat. Chem. Eng., 1, 661 (2024); https://doi.org/10.1038/s44286-024-00127-0
G. Xu, H. Cheng, R. Jones, Y. Feng, K. Gong, K. Li, X. Fang, M.A. Tahir, V.K. Valev and L. Zhang, Environ. Sci. Technol., 54, 15594 (2020); https://doi.org/10.1021/acs.est.0c02317
T.S. Tofa, F. Ye, K.L. Kunjali and J. Dutta, Catalysts, 9, 819 (2019); https://doi.org/10.3390/catal9100819
C.E. Carraher, Carraher’s Polymer Chemistry, Taylor and Francis Group, Florida, edn. 10, p. 765 (2018).
W. Liang, Y. Luo, S. Song, X. Dong and X. Yu, Polym. Degrad. Stab., 98, 1754 (2013); https://doi.org/10.1016/j.polymdegradstab.2013.05.027
T.E. Motaung, A.S. Luyt, F. Bondioli, M. Messori, M.L. Saladino, A. Spinella, G. Nasillo and E. Caponetti, Polym. Degrad. Stab., 97, 1325 (2012); https://doi.org/10.1016/j.polymdegradstab.2012.05.022
Y. Huang, X. Qing, W. Wang, G. Han and J. Wang, TrAC Trends Anal. Chem., 125, 115821 (2020); https://doi.org/10.1016/j.trac.2020.115821
J.N. Möller, M.G.J. Löder and C. Laforsch, Environ. Sci. Technol., 54, 2078 (2020); https://doi.org/10.1021/acs.est.9b04618
J.U. Izunobi and C.L. Higginbotham, J. Chem. Educ., 88, 1098 (2011); https://doi.org/10.1021/ed100461v
Y. Deng and R. Zhao, Curr. Pollut. Rep., 1, 167 (2015); https://doi.org/10.1007/s40726-015-0015-z
S. Khan, X. He, H.M. Khan, D. Boccelli and D.D. Dionysiou, J. Photochem. Photobiol. Chem., 316, 37 (2016); https://doi.org/10.1016/j.jphotochem.2015.10.004
X. Zhao, J. Jiang, S. Pang, C. Guan, J. Li, Z. Wang, J. Ma and C. Luo, Chemosphere, 221, 270 (2019); https://doi.org/10.1016/j.chemosphere.2018.12.162
R.C. Pawar and C.S. Lee, Heterogeneous Nanocomposite – Photocatalysis for Water Purification, William Andrew, Oxford, UK, pp 100 (2015).
A.S. Mohamed, M.R. Abukkhadra, E.A. Abdallah, A.M. El-Sherbeeny and R.K. Mahmoud, J. Photochem. Photobiol. Chem., 392, 112434 (2020); https://doi.org/10.1016/j.jphotochem.2020.112434
D.O. Adekoya, M. Tahir and N.A.S. Amin, J. CO2 Util., 18, 261 (2017); https://doi.org/10.1016/j.jcou.2017.02.004.
P.T. Lum, K.Y. Foo, N.A. Zakaria and P. Palaniandy, Mater. Chem. Phys., 241, 122405 (2020); https://doi.org/10.1016/j.matchemphys.2019.122405
A. Saravanan, P.S. Kumar, D.-V.N. Vo, P.R. Yaashikaa, S. Karishma, S. Jeevanantham, B. Gayathri and V.D. Bharathi, Environ. Chem. Lett., 19, 441 (2021); https://doi.org/10.1007/s10311-020-01077-8
I. Nabi, K. Li, H. Chang, T. Wang, Y. Liu, S. Ajmal, Y. Yang, Y. Feng and L. Zhang, iScience, 23, 101326 (2020); https://doi.org/10.1016/j.isci.2020.101326
M.H. Fadli, M. Ibadurrohman and S. Slamet, IOP Conf. Ser.: Mater. Sci. Eng.., 1011, 012055 (2021); https://doi.org/10.1088/1757-899X/1011/1/012055
G. Liu, S. Liao, D. Zhu, Y. Hua and W. Zhou, Chem. Eng. J., 213, 286 (2012); https://doi.org/10.1016/j.cej.2012.09.105
M.C. Ariza-Tarazona, J.F. Villarreal-Chiu, V. Barbieri, C. Siligardi and E.I. Cedillo-Gonzalez, Ceram. Int., 45, 9618 (2019); https://doi.org/10.1016/j.ceramint.2018.10.208
M.C. Ariza-Tarazona, J.F. Villarreal-Chiu, J.M. Hernandez-Lopez, J.R. De la Rosa, V. Barbieri, C. Siligardi and E.I. Cedillo-Gonzalez, J. Hazard. Mater., 395, 122633 (2020); https://doi.org/10.1016/j.jhazmat.2020.122632
F. Miao, Y. Liu, M. Gao, X. Yu, P. Xiao, M. Wang, S. Wang and X. Wang, J. Hazard. Mater., 399, 123023 (2020); https://doi.org/10.1016/j.jhazmat.2020.123023
A.D. Vital-Grappin, M.C. Ariza-Tarazona, V.M. Luna-Hernandez, J.F. Villarreal-Chiu, J.M. Hernandez-Lopez and C. Siligardi, Polym. J., 13, 999 (2021); https://doi.org/10.3390/polym13070999
B.E. Llorente-Garcia, J.M. Hernandez-Lopez, A.A Zaldivar-Cadena, C. Siligardi and E.I. Cedillo-Gonzalez, Coatings, 10, 658 (2020); https://doi.org/10.3390/coatings10070658
W.S. Hamd and J. Dutta, “Nanomaterials for the detection and removal of wastewater pollutants”, ed. B. Bonelli, F.S. Freyria, I. Rossetti and R. Sethi, 2020, chap. 1, Oxford Cambridge.
S. Garcia-Seguna and E. Brillas, Appl. Catal., 194, 206980 (2024); https://doi.org/10.1016/j.apcato.2024.206980
J. Cao, J. Li, B. Yang, Z. Chen, A.R. Mahjoub and M. Xing, Cell Reports Phys. Sci., 5, 101966 (2024); https://doi.org/10.1016/j.xcrp.2024.101966
X. Yang, X. Zeng, H. Chen, L. Xin, J. Pan, H. Ji and K. Cheng, Chem. Eng. J., 483, 148697 (2024); https://doi.org/10.1016/j.cej.2024.148697
A.J. Luna, O. Chiavone-Filho, A. Machulek Jr., J.E.F. de Moraes and C.A.O. Nascimento, J. Environ. Manage., 111, 10 (2012); https://doi.org/10.1016/j.jenvman.2012.06.014
T. Wang, Y. Bai, W. Si, W. Mao, Y. Gao and S. Liu, J. Photochem. Photobiol. Chem., 404, 112856 (2021); https://doi.org/10.1016/j.jphotochem.2020.112856
G.Y. Yew, X. Tan, K.Y. Chew, J.S. Chang, Y. Tao, N. Jiang and P.L. Show, Chem. Eng. J., 408, 127264 (2021); https://doi.org/10.1016/j.cej.2020.127264
J. Lin, K. Hu, Y. Wang, W. Tian, T. Hall, X. Duan, H. Sun, H. Zhang, E. Cortés and S. Wang, Nat. Commun., 15, 8769 (2024); https://doi.org/10.1038/s41467-024-53055-1
O. Dia, P. Drogui, R. Dubé and G. Buelna, J. Water Sci., 29, 1 (2016); https://doi.org/10.7202/1035717ar
P. Brosler, A.V. Girão, R.F. Silva, J. Tedim and F.J. Oliveira, Environments, 10, 15 (2023); https://doi.org/10.3390/environments10020015
D. Maharana, Z. Xu, J. Niu and N.N. Rao, Chemosphere, 136, 145 (2015); https://doi.org/10.1016/j.chemosphere.2015.04.100
M. Kiendrebeogo, M.R. Karimi Estahbanati, A. Khosravanipour Mostafazadeh, P. Drogui and R.D. Tyagi, Environ. Pollut., 269, 116168 (2021); https://doi.org/10.1016/j.envpol.2020.116168
H. Li, Y. Du, X. Shen, X. Kuang, J. Zhu and H. Wang, Int. J. Electrochem. Sci., 17, 201121 (2022); https://doi.org/10.20964/2022.11.01
N.H. Luan, Y.T. Yang and C.F. Chang, Sustain. Environ. Res., 32, 13 (2022); https://doi.org/10.1186/s42834-022-00122-1
J. Lu, R. Hou, Y. Wang, L. Zhou and Y. Yuan, Water Res., 226, 119277 (2022); https://doi.org/10.1016/j.watres.2022.119277
S. Oh and E.E. Stache, Chem. Soc. Rev., 53, 7309 (2024); https://doi.org/10.1039/D4CS00407H
R.S. Weber, Curr. Opin. Electrochem., 46, 101493 (2024); https://doi.org/10.1016/j.coelec.2024.101493
Y. Ouarda, B. Tiwari, A. Azais, M.A. Vaudreuil, S.D. Ndiaye, P. Drogui, R.D. Tyagi, S. Sauvé, M. Desrosiers, G. Buelna and R. Dubé, Chemosphere, 193, 160 (2018); https://doi.org/10.1016/j.chemosphere.2017.11.010
Z. Frontistis, M. Antonopoulou, D. Venieri, I. Konstantinou and D. Mantzavinos, J. Environ. Manage., 195, 100 (2017); https://doi.org/10.1016/j.jenvman.2016.04.035
F.E. Durán, D.M. de Araújo, C. do Nascimento Brito, E.V. Santos, S.O. Ganiyu and C.A. Martínez-Huitle, J. Electroanal. Chem., 818, 216 (2018); https://doi.org/10.1016/j.jelechem.2018.04.029
C. Wei, F. Zhang, Y. Hu, F. Fang and H. Wu, Rev. Chem. Eng., 33, 1 (2016); https://doi.org/10.1515/revce-2016-0008
Y. Gao, Y. Duan, W. Fan, T. Guo, M. Huo, W. Yang, S. Zhu and W. An, Environ. Sci. Pollut. Res. Int., 26, 21915 (2019); https://doi.org/10.1007/s11356-019-05554-8
A.N. Fitri, D. Amelia and E.F. Karamah, IOP Conf. Ser.: Mater. Sci. Eng., 1173, 012017 (2021); https://doi.org/10.1088/1757-899X/1173/1/012017
A. Kalemos and A. Mavridis, J. Chem. Phys., 129, 0543121 (2008); https://doi.org/10.1063/1.2960629
V.S.R. Pullabhotla Rajasekhar, Ph.D. Thesis, Scope of Microporous and Mesoporous Molecular Sieves in the Oxidation of Higher Alkanes with Ozone, University of Kwazulu – Natal, Durban, South Africa (2008).
Z.S. Ncanana and V.S.R.R. Pullabhotla, Catal. Lett., 148, 1535 (2018); https://doi.org/10.1007/s10562-018-2360-1
N. Lekše, T. Griessler Bulc and A. Žgajnar Gotvajn, Ozone Sci. Eng., 46, 255 (2024); https://doi.org/10.1080/01919512.2024.2332286
H. Tomiyasu, H. Fukutomi and G. Gordon, Inorg. Chem., 24, 2962 (1985); https://doi.org/10.1021/ic00213a018
J. Staehelin and J. Hoigné, Environ. Sci. Technol., 19, 1206 (1985); https://doi.org/10.1021/es00142a012
J. Hoigné and H. Bader, Water Res., 10, 377 (1976); https://doi.org/10.1016/0043-1354(76)90055-5
J. Hoigné and H. Bader, Ozone Sci. Eng., 1, 73 (1979); https://doi.org/10.1080/01919517908550834
J. Hoigné and H. Bader, Water Res., 17, 173 (1983); https://doi.org/10.1016/0043-1354(83)90098-2
Y. Pi, J. Schumacher and M. Jekel, Water Res., 39, 83 (2005); https://doi.org/10.1016/j.watres.2004.09.004
R. Lee and M.L. Coote, Phys. Chem. Chem. Phys., 18, 24663 (2016); https://doi.org/10.1039/C6CP05064F