Copyright (c) 2025 Sunil G. Shelar, Sandip P. Patil, Vilas Mahajan, P.K. Labhane, B.S. Bhadane, A.D. Mudawadkar, Gunvant Sonawane

This work is licensed under a Creative Commons Attribution 4.0 International License.
Layered Zn doped WO3 Nanoplates Fabricated via Hydrothermal Method for Efficient Photocatalytic Degradation of Congo Red Dye
Corresponding Author(s) : Gunvant H. Sonawane
Asian Journal of Chemistry,
Vol. 37 No. 6 (2025): Vol 37 Issue 6, 2025
Abstract
Orthorhombic Zn doped WO3 nanoplates (1, 2 and 5 wt.%) were fabricated by a simple and economical hydrothermal method. The photocatalytic activity of Zn doped WO3 nanoplates was studied by degradation of Congo red dye under visible light radiation. The effects of different experimental parameters like the dye concentration, photocatalyst dose and pH on the photocatalytic efficiency were explored under identical conditions. The kinetics study shows that the photocatalytic degradation follows first order kinetics. The photocatalytic degradation was found to enhance with increased Zn-doped WO3 nanoplates. If the effect of Zn doping compared, then photocatalytic degradation efficiency for 5 wt.% Zn doped WO3 was highest. The inclusion of Zn in the lattice of WO3 was observed to be distinctive enough to enhance their photo-degradation efficiency under visible-light. Further, Zn doping not only restricts the recombination of photo induced electron–hole pairs but also enhances the photostability of WO3.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- C. Grandclément, I. Seyssiecq, A. Piram, P. Wong-Wah-Chung, G. Vanot, N. Tiliacos, N. Roche and P. Doumenq, Water Res., 111, 297 (2017); https://doi.org/10.1016/j.watres.2017.01.005
- S.D. Melvin and F.D.L. Leusch, Environ. Int., 92-93, 183 (2016); https://doi.org/10.1016/j.envint.2016.03.031
- M.H. Sayed Abhudhahir and J. Kandasamy, J. Mater. Sci. Mater. Electron., 26, 8307 (2015); https://doi.org/10.1007/s10854-015-3496-z
- S. Rajendran, D. Manoj, J.N. Jebaranjitham, B.G. Kumar, G. Bharath, F. Banat, J. Qin, S. Vadivel and F. Gracia, J. Mol. Liq., 311, 113328 (2020); https://doi.org/10.1016/j.molliq.2020.113328
- F. Mehmood, J. Iqbal, T. Jan and Q. Mansoor, J. Alloys Compd., 728, 1329 (2017); https://doi.org/10.1016/j.jallcom.2017.08.234
- S. Adhikari, D. Sarkar and H.S. Maiti, Mater. Res. Bull., 49, 325 (2014); https://doi.org/10.1016/j.materresbull.2013.08.028
- H. Zhang, G. Chen and D.W. Bahnemann, J. Mater. Chem., 19, 5089 (2009); https://doi.org/10.1039/b821991e
- R.H. Coridan, M. Shaner, C. Wiggenhorn, B.S. Brunschwig and N.S. Lewis, J. Phys. Chem. C, 117, 6949 (2013); https://doi.org/10.1021/jp311947x
- M. Ahmadi, R. Younesi and M.J.-F. Guinel, J. Mater. Res., 29, 1424 (2014); https://doi.org/10.1557/jmr.2014.155
- M.R. Waller, T.K. Townsend, J. Zhao, E.M. Sabio, R.L. Chamousis, N.D. Browning and F.E. Osterloh, Chem. Mater., 24, 698 (2012); https://doi.org/10.1021/cm203293j
- X.F. Cheng, W.H. Leng, D.P. Liu, J.Q. Zhang and C.N. Cao, Chemosphere, 68, 1976 (2007); https://doi.org/10.1016/j.chemosphere.2007.02.010
- V. Hariharan, V. Aroulmoji, K. Prabakaran, M. Parthibavarman, B. Gnanavel, R. Sathyapriya and M. Kanagaraj, J. Alloys Compd., 689, 41 (2016); https://doi.org/10.1016/j.jallcom.2016.07.136
- C.Y. Park, J.M. Seo, H. Jo, J. Park, K.M. Ok and T.J. Park, Sci. Rep., 7, 40928 (2017); https://doi.org/10.1038/srep40928
- D. Sánchez-Martínez, A. Martínez-de la Cruz and E. López-Cuéllar, Mater. Res. Bull., 48, 691 (2013); https://doi.org/10.1016/j.materresbull.2012.11.024
- N. Asim, M.F. Syuhami, M. Badiei and M.A. Yarmo, APCBEE Procedia, 9, 175 (2014); https://doi.org/10.1016/j.apcbee.2014.01.031
- S.P. Patil, V.K. Mahajan, V.S. Shrivastava and G.H. Sonawane, Iran. Chem. Commun., 5, 417 (2017).
- M. Abdennouri, A. Elhalil, M. Farnane, H. Tounsadi, F.Z. Mahjoubi, R. Elmoubarki, M. Sadiq, L. Khamar, A. Galadi, M. Baalala, M. Bensitel, Y. El hafiane, A. Smith and N. Barka, J. Saudi Chem. Soc., 19, 485 (2015); https://doi.org/10.1016/j.jscs.2015.06.007
- S. Bai, K. Zhang, X. Shu, S. Chen, R. Luo, D. Li and A. Chen, CrystEngComm, 16, 10210 (2014); https://doi.org/10.1039/C4CE01167H
- Y. Wang, B. Liu, S. Xiao, X. Wang, L. Sun, H. Li, W. Xie, Q. Li, Q. Zhang and T. Wang, ACS Appl. Mater. Interfaces, 8, 9674 (2016); https://doi.org/10.1021/acsami.5b12857
- B. Deepa and V. Rajendran, Nano-Struct. Nano-Objects, 16, 185 (2018); https://doi.org/10.1016/j.nanoso.2018.06.005
- D. Madhan, M. Parthibavarman, P. Rajkumar and M. Sangeetha, J. Mater. Sci. Mater. Electron., 26, 6823 (2015); https://doi.org/10.1007/s10854-015-3296-5
- M. Alaei, A.R. Mahjoub and A. Rashidi, Iran. J. Chem. Chem. Eng., 31, 23 (2012); https://doi.org/10.30492/ijcce.2012.6042
- A. Akyol, H.C. Yatmaz and M. Bayramoglu, Appl. Catal. B, 54, 19 (2004); https://doi.org/10.1016/j.apcatb.2004.05.021
- Q. Xiang, G.F. Meng, H.B. Zhao, Y. Zhang, H. Li, W.J. Ma and J.Q. Xu, J. Phys. Chem. C, 114, 2049 (2010); https://doi.org/10.1021/jp909742d
- M.T. Eesa, A.M. Juda and L.M. Ahmed, Int. J. Sci. Res., 5, 1495 (2016); https://doi.org/10.21275/ART20163016
- K.M. Reza, A.S.W. Kurny and F. Gulshan, Appl. Water Sci., 7, 1569 (2017); https://doi.org/10.1007/s13201-015-0367-y
- C. Ferrari, H. Chen, R. Lavezza, C. Santinelli, I. Longo and E. Bramanti, Int. J. Photoenergy, 2013, 854857 (2013); https://doi.org/10.1155/2013/854857
- K. Byrappa, A.K. Subramani, S. Ananda, K.M.L. Rai, R. Dinesh and M. Yoshimura, Bull. Mater. Sci., 29, 433 (2006); https://doi.org/10.1007/BF02914073
- N. Barka, S. Qourzal, A. Assabbane, A. Nounah and Y. Ait-Ichou, J. Photochem. Photobiol. Chem., 195, 346 (2008); https://doi.org/10.1016/j.jphotochem.2007.10.022
- Z.H. Siahpoosh and M. Soleimani, Process Saf. Environ. Prot., 111, 180 (2017); https://doi.org/10.1016/j.psep.2017.07.009
- Z.M. Abou-Gamra, Adv. Chem. Eng. Sci., 4, 285 (2014); https://doi.org/10.4236/aces.2014.43031
- W. Xie, Y.Z. Li, W. Sun, J.C. Huang, H. Xie and X.J. Zhao, J. Photochem. Photobiol. Chem., 216, 149 (2010); https://doi.org/10.1016/j.jphotochem.2010.06.032
- K. Mehrotra, G.S. Yablonsky and A.K. Ray, Chemosphere, 60, 1427 (2005); https://doi.org/10.1016/j.chemosphere.2005.01.074
- G.H. Sonawane, S.P. Patil and V.S. Shrivastava, J. Inst. Eng. India Ser. E, 98, 55 (2017); https://doi.org/10.1007/s40034-016-0089-1
- V.K. Mahajan and G.H. Sonawane, Nanochem. Res., 1, 258 (2016); https://doi.org/10.7508/ncr.2016.02.013
- www.cpcbenvis.nic.in
References
C. Grandclément, I. Seyssiecq, A. Piram, P. Wong-Wah-Chung, G. Vanot, N. Tiliacos, N. Roche and P. Doumenq, Water Res., 111, 297 (2017); https://doi.org/10.1016/j.watres.2017.01.005
S.D. Melvin and F.D.L. Leusch, Environ. Int., 92-93, 183 (2016); https://doi.org/10.1016/j.envint.2016.03.031
M.H. Sayed Abhudhahir and J. Kandasamy, J. Mater. Sci. Mater. Electron., 26, 8307 (2015); https://doi.org/10.1007/s10854-015-3496-z
S. Rajendran, D. Manoj, J.N. Jebaranjitham, B.G. Kumar, G. Bharath, F. Banat, J. Qin, S. Vadivel and F. Gracia, J. Mol. Liq., 311, 113328 (2020); https://doi.org/10.1016/j.molliq.2020.113328
F. Mehmood, J. Iqbal, T. Jan and Q. Mansoor, J. Alloys Compd., 728, 1329 (2017); https://doi.org/10.1016/j.jallcom.2017.08.234
S. Adhikari, D. Sarkar and H.S. Maiti, Mater. Res. Bull., 49, 325 (2014); https://doi.org/10.1016/j.materresbull.2013.08.028
H. Zhang, G. Chen and D.W. Bahnemann, J. Mater. Chem., 19, 5089 (2009); https://doi.org/10.1039/b821991e
R.H. Coridan, M. Shaner, C. Wiggenhorn, B.S. Brunschwig and N.S. Lewis, J. Phys. Chem. C, 117, 6949 (2013); https://doi.org/10.1021/jp311947x
M. Ahmadi, R. Younesi and M.J.-F. Guinel, J. Mater. Res., 29, 1424 (2014); https://doi.org/10.1557/jmr.2014.155
M.R. Waller, T.K. Townsend, J. Zhao, E.M. Sabio, R.L. Chamousis, N.D. Browning and F.E. Osterloh, Chem. Mater., 24, 698 (2012); https://doi.org/10.1021/cm203293j
X.F. Cheng, W.H. Leng, D.P. Liu, J.Q. Zhang and C.N. Cao, Chemosphere, 68, 1976 (2007); https://doi.org/10.1016/j.chemosphere.2007.02.010
V. Hariharan, V. Aroulmoji, K. Prabakaran, M. Parthibavarman, B. Gnanavel, R. Sathyapriya and M. Kanagaraj, J. Alloys Compd., 689, 41 (2016); https://doi.org/10.1016/j.jallcom.2016.07.136
C.Y. Park, J.M. Seo, H. Jo, J. Park, K.M. Ok and T.J. Park, Sci. Rep., 7, 40928 (2017); https://doi.org/10.1038/srep40928
D. Sánchez-Martínez, A. Martínez-de la Cruz and E. López-Cuéllar, Mater. Res. Bull., 48, 691 (2013); https://doi.org/10.1016/j.materresbull.2012.11.024
N. Asim, M.F. Syuhami, M. Badiei and M.A. Yarmo, APCBEE Procedia, 9, 175 (2014); https://doi.org/10.1016/j.apcbee.2014.01.031
S.P. Patil, V.K. Mahajan, V.S. Shrivastava and G.H. Sonawane, Iran. Chem. Commun., 5, 417 (2017).
M. Abdennouri, A. Elhalil, M. Farnane, H. Tounsadi, F.Z. Mahjoubi, R. Elmoubarki, M. Sadiq, L. Khamar, A. Galadi, M. Baalala, M. Bensitel, Y. El hafiane, A. Smith and N. Barka, J. Saudi Chem. Soc., 19, 485 (2015); https://doi.org/10.1016/j.jscs.2015.06.007
S. Bai, K. Zhang, X. Shu, S. Chen, R. Luo, D. Li and A. Chen, CrystEngComm, 16, 10210 (2014); https://doi.org/10.1039/C4CE01167H
Y. Wang, B. Liu, S. Xiao, X. Wang, L. Sun, H. Li, W. Xie, Q. Li, Q. Zhang and T. Wang, ACS Appl. Mater. Interfaces, 8, 9674 (2016); https://doi.org/10.1021/acsami.5b12857
B. Deepa and V. Rajendran, Nano-Struct. Nano-Objects, 16, 185 (2018); https://doi.org/10.1016/j.nanoso.2018.06.005
D. Madhan, M. Parthibavarman, P. Rajkumar and M. Sangeetha, J. Mater. Sci. Mater. Electron., 26, 6823 (2015); https://doi.org/10.1007/s10854-015-3296-5
M. Alaei, A.R. Mahjoub and A. Rashidi, Iran. J. Chem. Chem. Eng., 31, 23 (2012); https://doi.org/10.30492/ijcce.2012.6042
A. Akyol, H.C. Yatmaz and M. Bayramoglu, Appl. Catal. B, 54, 19 (2004); https://doi.org/10.1016/j.apcatb.2004.05.021
Q. Xiang, G.F. Meng, H.B. Zhao, Y. Zhang, H. Li, W.J. Ma and J.Q. Xu, J. Phys. Chem. C, 114, 2049 (2010); https://doi.org/10.1021/jp909742d
M.T. Eesa, A.M. Juda and L.M. Ahmed, Int. J. Sci. Res., 5, 1495 (2016); https://doi.org/10.21275/ART20163016
K.M. Reza, A.S.W. Kurny and F. Gulshan, Appl. Water Sci., 7, 1569 (2017); https://doi.org/10.1007/s13201-015-0367-y
C. Ferrari, H. Chen, R. Lavezza, C. Santinelli, I. Longo and E. Bramanti, Int. J. Photoenergy, 2013, 854857 (2013); https://doi.org/10.1155/2013/854857
K. Byrappa, A.K. Subramani, S. Ananda, K.M.L. Rai, R. Dinesh and M. Yoshimura, Bull. Mater. Sci., 29, 433 (2006); https://doi.org/10.1007/BF02914073
N. Barka, S. Qourzal, A. Assabbane, A. Nounah and Y. Ait-Ichou, J. Photochem. Photobiol. Chem., 195, 346 (2008); https://doi.org/10.1016/j.jphotochem.2007.10.022
Z.H. Siahpoosh and M. Soleimani, Process Saf. Environ. Prot., 111, 180 (2017); https://doi.org/10.1016/j.psep.2017.07.009
Z.M. Abou-Gamra, Adv. Chem. Eng. Sci., 4, 285 (2014); https://doi.org/10.4236/aces.2014.43031
W. Xie, Y.Z. Li, W. Sun, J.C. Huang, H. Xie and X.J. Zhao, J. Photochem. Photobiol. Chem., 216, 149 (2010); https://doi.org/10.1016/j.jphotochem.2010.06.032
K. Mehrotra, G.S. Yablonsky and A.K. Ray, Chemosphere, 60, 1427 (2005); https://doi.org/10.1016/j.chemosphere.2005.01.074
G.H. Sonawane, S.P. Patil and V.S. Shrivastava, J. Inst. Eng. India Ser. E, 98, 55 (2017); https://doi.org/10.1007/s40034-016-0089-1
V.K. Mahajan and G.H. Sonawane, Nanochem. Res., 1, 258 (2016); https://doi.org/10.7508/ncr.2016.02.013
www.cpcbenvis.nic.in