Copyright (c) 2025 Sathish M

This work is licensed under a Creative Commons Attribution 4.0 International License.
Synthesis, Characterization and Photocatalytic Applications of Nanocomposites with Nickel Nitrate Doped Zinc Oxide Nanoparticles
Corresponding Author(s) : M. Sathish
Asian Journal of Chemistry,
Vol. 37 No. 6 (2025): Vol 37 Issue 6, 2025
Abstract
In this work, the co-precipitation method was used to synthesize nickel nitrate-doped zinc oxide (Ni:ZnO) nanoparticles. Zinc oxide (ZnO) is widely known for its optical, electrical and catalytic properties, making it a versatile material in various applications, including sensors, catalysis and optoelectronic devices. The incorporation of nickel nitrate into the ZnO matrix aims to enhance its structural and functional properties by altering the defect states, band gap and surface morphology. In this study, Ni-doped ZnO nanoparticles were prepared using zinc nitrate as precursor for ZnO and nickel nitrate as the dopant. The doping concentration of nickel nitrate was varied to investigate its impact on the structural, optical and magnetic properties of the synthesized material. The co-precipitation method was employed, followed by calcination to achieve crystallization. The synthesized nanoparticles were characterized using X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM) and UV-Vis spectroscopy. The results revealed that nickel doping significantly affected the crystallite size, bandgap energy and optical absorption properties of ZnO, making Ni:ZnO a promising candidate for potential applications in photocatalysis, cyclic voltammetery provides insights into its electrochemical properties and optoelectronics.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Y. Zhang and X. Xu, ACS Omega, 5, 15344 (2020); https://doi.org/10.1021/acsomega.0c01438
- R. Kant, V. Ahuja, K. Joshi, H. Gupta and S. Bhardwaj, Vacuum, 204, 111375 (2022); https://doi.org/10.1016/j.vacuum.2022.111375
- A. Rajeh, H.A. Althobaiti, S.J. Almehmadi, H.A. Alsalmah, N.A. Masmali, A.I. Al-Sulami and M. Al-Ejji, J. Inorg. Organomet. Polym. Mater., 34, 1221 (2024); https://doi.org/10.1007/s10904-023-02880-w
- S.P. Vattikuti, J. Shim, N. Nguyen Dang, P. Rosaiah, M.R. Karim, I.A. Alnaser and B. Khan, Int. J. Energy Res., 2024, 4589047 (2024); https://doi.org/10.1155/2024/4589047
- S.G. Danjumma, Y. Abubakar and S. Suleiman, J. Eng. Res. Technol., 8, 12 (2019).
- S.D. Dhas, P.S. Maldar, M.D. Patil, A.B. Nagare, M.R. Waikar, R.G. Sonkawade and A.V. Moholkar, Vacuum, 181, 109646 (2020); https://doi.org/10.1016/j.vacuum.2020.109646
- K.O. Ukoba, A.C. Eloka-Eboka and F.L. Inambao, Renew. Sustain. Energy Rev., 82, 2900 (2018); https://doi.org/10.1016/j.rser.2017.10.041
- K. Davis, R. Yarbrough, M. Froeschle, J. White and H. Rathnayake, RSC Adv., 9, 14638 (2019); https://doi.org/10.1039/C9RA02091H
- A.B. Djurišic and Y.H. Leung, Small, 2, 944 (2006); https://doi.org/10.1002/smll.200600134
- D.K. Sharma, S. Shukla, K.K. Sharma and V. Kumar, Mater. Today Proc., 49, 3028 (2022); https://doi.org/10.1016/j.matpr.2020.10.238
- K. Jayaraman, M. Kotaki, Y. Zhang, X. Mo and S. Ramakrishna, J. Nanosci. Nanotechnol., 4, 52 (2004).
- I. Stolyarchuk, O. Kuzyk, O. Dan’kiv, A. Dziedzic, G. Kleto, A. Stolyarchuk, A. Popovych and I. Hadzaman, Coatings, 13, 601 (2023); https://doi.org/10.3390/coatings13030601
- A. Janotti and C.G. Van de Walle, Rep. Prog. Phys., 72, 126501 (2009); https://doi.org/10.1088/0034-4885/72/12/126501
- S. Minisha, J. Johnson, S. Mohammad, J.K. Gupta, S. Aftab, A.A. Alothman and W.C. Lai, Water, 16, 340 (2024); https://doi.org/10.3390/w16020340
- F. Ahmed, N. Arshi, M.S. Anwar, S.H. Lee, E.S. Byon, N.J. Lyu and B.H. Koo, Curr. Appl. Phys., 12, S174 (2012); https://doi.org/10.1016/j.cap.2012.02.054
- A.K. Azfar, M.F. Kasim, I.M. Lokman, H.A. Rafaie and M.S. Mastuli, R. Soc. Open Sci., 7, 191590 (2020); https://doi.org/10.1098/rsos.191590
- I.B. Elkamel, N. Hamdaoui, A. Mezni, R. Ajjel and L. Beji, RSC Adv., 8, 32333 (2018); https://doi.org/10.1039/C8RA05567J
- S.H. Zyoud, V. Ganesh, C.A. Che Abdullah, I.S. Yahia, A.H. Zyoud, A.F. Abdelkader, M.G. Daher, M. Nasor, M. Shahwan, H.Y. Zahran, M.S. Abd El-Sadek, E.A. Kamoun, S.M. Altarifi and M.S. Abdel-Wahab, Crystals, 13, 1087 (2023); https://doi.org/10.3390/cryst13071087
- S. Ahmad, M. Usman, M. Hashim, A. Ali, R. Shah and N.U. Rahman, Nanomater. Nanotechnol., 2024, 8330886 (2024); https://doi.org/10.1155/2024/8330886
- R.N. Ali, H. Naz, J. Li, X. Zhu, P. Liu and B. Xiang, J. Alloys Compd., 744, 90 (2018); https://doi.org/10.1016/j.jallcom.2018.02.072
- N. Guermat, W. Daranfed, I. Bouchama and N. Bouarissa, J. Mol. Struct., 1225, 129134 (2021); https://doi.org/10.1016/j.molstruc.2020.129134
- R. Elilarassi and G. Chandrasekaran, Optoelectron. Lett., 6, 6 (2010); https://doi.org/10.1007/s11801-010-9236-y
- R. Elilarassi and G. Chandrasekaran, J. Mater. Sci. Mater. Electron., 22, 751 (2011); https://doi.org/10.1007/s10854-010-0206-8
- G. Vijayaprasath, R. Murugan, S. Palanisamy, N.M. Prabhu, T. Mahalingam, Y. Hayakawa and G. Ravi, Mater. Res. Bull., 76, 48 (2016); https://doi.org/10.1016/j.materresbull.2015.11.053
References
Y. Zhang and X. Xu, ACS Omega, 5, 15344 (2020); https://doi.org/10.1021/acsomega.0c01438
R. Kant, V. Ahuja, K. Joshi, H. Gupta and S. Bhardwaj, Vacuum, 204, 111375 (2022); https://doi.org/10.1016/j.vacuum.2022.111375
A. Rajeh, H.A. Althobaiti, S.J. Almehmadi, H.A. Alsalmah, N.A. Masmali, A.I. Al-Sulami and M. Al-Ejji, J. Inorg. Organomet. Polym. Mater., 34, 1221 (2024); https://doi.org/10.1007/s10904-023-02880-w
S.P. Vattikuti, J. Shim, N. Nguyen Dang, P. Rosaiah, M.R. Karim, I.A. Alnaser and B. Khan, Int. J. Energy Res., 2024, 4589047 (2024); https://doi.org/10.1155/2024/4589047
S.G. Danjumma, Y. Abubakar and S. Suleiman, J. Eng. Res. Technol., 8, 12 (2019).
S.D. Dhas, P.S. Maldar, M.D. Patil, A.B. Nagare, M.R. Waikar, R.G. Sonkawade and A.V. Moholkar, Vacuum, 181, 109646 (2020); https://doi.org/10.1016/j.vacuum.2020.109646
K.O. Ukoba, A.C. Eloka-Eboka and F.L. Inambao, Renew. Sustain. Energy Rev., 82, 2900 (2018); https://doi.org/10.1016/j.rser.2017.10.041
K. Davis, R. Yarbrough, M. Froeschle, J. White and H. Rathnayake, RSC Adv., 9, 14638 (2019); https://doi.org/10.1039/C9RA02091H
A.B. Djurišic and Y.H. Leung, Small, 2, 944 (2006); https://doi.org/10.1002/smll.200600134
D.K. Sharma, S. Shukla, K.K. Sharma and V. Kumar, Mater. Today Proc., 49, 3028 (2022); https://doi.org/10.1016/j.matpr.2020.10.238
K. Jayaraman, M. Kotaki, Y. Zhang, X. Mo and S. Ramakrishna, J. Nanosci. Nanotechnol., 4, 52 (2004).
I. Stolyarchuk, O. Kuzyk, O. Dan’kiv, A. Dziedzic, G. Kleto, A. Stolyarchuk, A. Popovych and I. Hadzaman, Coatings, 13, 601 (2023); https://doi.org/10.3390/coatings13030601
A. Janotti and C.G. Van de Walle, Rep. Prog. Phys., 72, 126501 (2009); https://doi.org/10.1088/0034-4885/72/12/126501
S. Minisha, J. Johnson, S. Mohammad, J.K. Gupta, S. Aftab, A.A. Alothman and W.C. Lai, Water, 16, 340 (2024); https://doi.org/10.3390/w16020340
F. Ahmed, N. Arshi, M.S. Anwar, S.H. Lee, E.S. Byon, N.J. Lyu and B.H. Koo, Curr. Appl. Phys., 12, S174 (2012); https://doi.org/10.1016/j.cap.2012.02.054
A.K. Azfar, M.F. Kasim, I.M. Lokman, H.A. Rafaie and M.S. Mastuli, R. Soc. Open Sci., 7, 191590 (2020); https://doi.org/10.1098/rsos.191590
I.B. Elkamel, N. Hamdaoui, A. Mezni, R. Ajjel and L. Beji, RSC Adv., 8, 32333 (2018); https://doi.org/10.1039/C8RA05567J
S.H. Zyoud, V. Ganesh, C.A. Che Abdullah, I.S. Yahia, A.H. Zyoud, A.F. Abdelkader, M.G. Daher, M. Nasor, M. Shahwan, H.Y. Zahran, M.S. Abd El-Sadek, E.A. Kamoun, S.M. Altarifi and M.S. Abdel-Wahab, Crystals, 13, 1087 (2023); https://doi.org/10.3390/cryst13071087
S. Ahmad, M. Usman, M. Hashim, A. Ali, R. Shah and N.U. Rahman, Nanomater. Nanotechnol., 2024, 8330886 (2024); https://doi.org/10.1155/2024/8330886
R.N. Ali, H. Naz, J. Li, X. Zhu, P. Liu and B. Xiang, J. Alloys Compd., 744, 90 (2018); https://doi.org/10.1016/j.jallcom.2018.02.072
N. Guermat, W. Daranfed, I. Bouchama and N. Bouarissa, J. Mol. Struct., 1225, 129134 (2021); https://doi.org/10.1016/j.molstruc.2020.129134
R. Elilarassi and G. Chandrasekaran, Optoelectron. Lett., 6, 6 (2010); https://doi.org/10.1007/s11801-010-9236-y
R. Elilarassi and G. Chandrasekaran, J. Mater. Sci. Mater. Electron., 22, 751 (2011); https://doi.org/10.1007/s10854-010-0206-8
G. Vijayaprasath, R. Murugan, S. Palanisamy, N.M. Prabhu, T. Mahalingam, Y. Hayakawa and G. Ravi, Mater. Res. Bull., 76, 48 (2016); https://doi.org/10.1016/j.materresbull.2015.11.053