Copyright (c) 2025 E. Eunice, Johanan Christian Prasana

This work is licensed under a Creative Commons Attribution 4.0 International License.
Alzheimer’s Dementia Targeting by Plant-Derived 2,6-Dimethoxybenzoic Acid: In vitro, DFT and Molecular Docking Study
Corresponding Author(s) : Johanan Christian Prasana
Asian Journal of Chemistry,
Vol. 37 No. 6 (2025): Vol 37 Issue 6, 2025
Abstract
2,6-Dimethoxybenzoic acid (2,6-DMBA), a phytochemical from golden eye grass, shows promising therapeutic agent for Alzheimer’s dementia (AD). Density functional theory (DFT) calculations with the B3LYP functional and 6-311++G(d,p) basis set were used for the structural optimization, spectroscopic, electronic, topological and biological evaluation. Spectroscopic methods, such as Fourier transform infrared (FT-IR) and Fourier transform raman (FT-Raman) spectroscopy, supported the geometric structure. Topological analyses, including molecular electrostatic potential (MEP), electron localization function (ELF), localized orbital locator (LOL) and reduced density gradient (RDG), identified reactive sites, while natural bond orbital (NBO), natural population analysis (NPA) and Mulliken population analysis (MPA) provided insights into charge distribution, inter- and intramolecular interactions. Nonlinear optical (NLO) properties, Frontier molecular orbital (FMO) analysis, ultraviolet-visible (UV-Vis) spectroscopy and drug-likeness evaluations highlighted its electronic characteristics and potential pharmacokinetic profile. Molecular docking studies revealed strong binding affinities with AD targets β-secretase 1 (BACE-1, 6EQM) and acetylcholinesterase (AChE, 2C5G), suggesting dual inhibitory potential. In vitro assay and absorption, distribution, metabolism, excretion and toxicity (ADMET) profiling indicated good oral bioavailability, blood brain barrier (BBB) permeability, low toxicity and favourable pharmacokinetics, supporting that 2,6-DMBA may be a potent compound for developing AD therapeutics.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Alzheimer’s Association, Alzheimers Dement., 19, 1 (2023); https://doi.org/10.1002/alz.12925
- Q. Wu, D.-X. Fu, A.-J. Hou, G.-Q. Lei, Z.-J. Liu, J.-K. Chen and T.-S. Zhou, Chem. Pharm. Bull., 53, 1065 (2005); https://doi.org/10.1248/cpb.53.1065
- N. Soni, V.K. Lal, S. Agrawal, S. Kadam and H. Verma, Int. J. Pharm. Sci. Res., 8, 2407 (2012).
- D.A. Baranenko, M.K. Kurbonova, W. Lu and J. Jing, in eds.: J. Akhtar, M. Sarwat and F. Bashir, Plants of Chinese Origin for the Management of Neurodegenerative Diseases in the Elderly, In: Medicinal Plants for the Management of Neurodegenerative Diseases, CRC Press, edn 1, pp. 64-75 (2024).
- A.A. Farooqi, G. Butt, S.A. El-Zahaby, R. Attar, U.Y. Sabitaliyevich, J.J. Jovic, K.-F. Tang, H. Naureen and B. Xu, Pharmacol. Res., 160, 105188 (2020); https://doi.org/10.1016/j.phrs.2020.105188
- J. Hardy and D.J. Selkoe, Science, 297, 353 (2002); https://doi.org/10.1126/science.1072994
- D.D. Perrin, B. Dempsey and E.P. Serjeant, pKa Prediction for Organic Acids and Bases, Chapman and Hall: London, vol. 1 (1981).
- B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts and P. Walter, Molecular Biology of the Cell, Garland Science, New York, edn 4 (2002).
- D.L. Nelson, A.L. Lehninger and M.M. Cox, Lehninger Principles of Biochemistry, Macmillan (2008).
- C.P. Miller and E. Peter Stang, Mol. Pharmacol., 90, 713 (2022); https://doi.org/10.1124/mol.121.120246
- S. Sharma, B. Nehru and A. Saini, Neurochem. Int., 108, 481 (2017); https://doi.org/10.1016/j.neuint.2017.06.011
- S. Sharma and V. Bhatia, Curr. Pharm. Des., 27, 2848 (2021); https://doi.org/10.2174/1381612826666200928161721
- M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery Jr., J.E. Peralta, F. Ogliaro, J.J. Heyd, M. Bearpark, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S. S. Iyengar, M. Cossi, J. Tomasi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, Ö. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski and D. J. Fox, Gaussian 09, Revision B.01, Gaussian Inc. Wallingford, CT (2009).
- R. Dennington, T. Keith and J. Millam, Gauss View, Version 5. Semichem Inc., Shawnee Mission (2009).
- M.H. Jamróz, Biomol., 114, 220 (2013).
- F. Cuenú, N. Muñoz-Patiño, J.E. Torres, R. Abonia, R.A. Toscano and J. Cobo, J. Mol. Struct., 1148, 557 (2017); https://doi.org/10.1016/j.molstruc.2017.07.038
- T. Lu and F. Chen, J. Comput. Chem., 33, 580 (2012); https://doi.org/10.1002/jcc.22885
- W. Humphrey, A. Dalke and K. Schulten, J. Mol. Graph., 14, 33 (1996); https://doi.org/10.1016/0263-7855(96)00018-5
- A.E. Reed, L.A. Curtiss and F. Weinhold, Chem. Rev., 88, 899 (1988); https://doi.org/10.1021/cr00088a005
- A. Daina, O. Michielin and V. Zoete, Sci. Rep., 7, 42717 (2017); https://doi.org/10.1038/srep42717
- D.A. Filimonov, A.A. Lagunin, T.A. Gloriozova, D.S. Druzhilovskii, A.V. Rudik, P.V. Pogodin and V.V. Poroikov, Chem. Heterocycl. Compd., 50, 444 (2014); https://doi.org/10.1007/s10593-014-1496-1
- R.A. Laskowski, M.W. MacArthur, D.S. Moss and J.M. Thornton, J. Appl. Cryst., 26, 283 (1993); https://doi.org/10.1107/S0021889892009944
- R. Huey, G.M. Morris and S. Forli, Using AutoDock 4 and AutoDock Vina with AutoDockTools: A Tutorial, The Scripps Research Institute Molecular Graphics Laboratory, California, USA (2012).
- D. Biovia, H. Berman, J. Westbrook, Z. Feng, G. Gilliland, T. Bhat and T.J.T.J.o.C.P. Richmond, Dassault Systèmes BIOVIA, Discovery Studio Visualizer, v. 17.2, San Diego: Dassault Systèmes, 2016, 10 (2000).
- P. Banerjee, E. Kemmler, M. Dunkel and R. Preissner, Nucleic Acids Res., 52(W1), W513 (2024); https://doi.org/10.1093/nar/gkae303
- A.E. Blanchard, D. Bhowmik, Z. Fox, J. Gounley, J. Glaser, B.S. Akpa and S. Irle, J. Cheminform., 15, 59 (2023); https://doi.org/10.1186/s13321-023-00719-7
- P. Schneider, W.P. Walters, A.T. Plowright, N. Sieroka, J. Listgarten, R.A. Goodnow Jr., J. Fisher, J.M. Jansen, J.S. Duca, T.S. Rush, M. Zentgraf, J.E. Hill, E. Krutoholow, M. Kohler, J. Blaney, K. Funatsu, C. Luebkemann and G. Schneider, Nat. Rev. Drug Discov., 19, 353 (2020); https://doi.org/10.1038/s41573-019-0050-3
- S. Scheiner, Phys. Chem. Chem. Phys., 13, 13860 (2011); https://doi.org/10.1039/c1cp20427k
- G.-J. Linker, P.T. van Duijnen and R. Broer, J. Phys. Chem. A, 124, 1306 (2020); https://doi.org/10.1021/acs.jpca.9b10248
- A. Orlando, F. Franceschini, C. Muscas, S. Pidkova, M. Bartoli, M. Rovere and A. Tagliaferro, Chemosensors, 9, 262 (2021); https://doi.org/10.3390/chemosensors9090262
- S. Zhang, Y. Qi, S.P.H. Tan, R. Bi and M. Olivo, Biosensors, 13, 557 (2023); https://doi.org/10.3390/bios13050557
- I.M. Alecu, J. Zheng, Y. Zhao and D.G. Truhlar, J. Chem. Theory Comput., 6, 2872 (2010); https://doi.org/10.1021/ct100326h
- G. Bharathy, J.C. Prasana, V.S.J. Reeda, M. Prasath and A. Manikandan, Chem. Phys. Impact, 8, 100558 (2024); https://doi.org/10.1016/j.chphi.2024.100558
- P.S. Kalsi, Spectroscopy of Organic Compounds, New Age International, New Delhi, India (2007).
- A. Kumar, M. Khandelwal, S.K. Gupta, V. Kumar and R. Rani, in eds.: G. Misra, Fourier Transform Infrared Spectroscopy: Data Interpretation and Applications in Structure Elucidation and Analysis of Small Mole-cules and Nanostructures; In: Data Processing Handbook for Complex Biological Data Sources, Academic Press, Chap. 6, pp. 77-96 (2019).
- S. Yadav, S. Banik and M.D. Prasad, Phys. Chem. Chem. Phys., 23, 9176 (2021); https://doi.org/10.1039/D0CP01157F
- D. Michalska, D.C. Bieñko, A.J. Abkowicz-Bieñko and Z. Latajka, J. Phys. Chem., 100, 17786 (1996); https://doi.org/10.1021/jp961376v
- D. Kennepohl, S. Farmer and W. Reusch, Infrared Spectra of Some Common Functional Groups, LibreTexts: Chemistry (2020).
- K. Hemachandran, P. Anbusrinivasan, S. Ramalingam, R. Aarthi and C.K. Nithya, Heliyon, 5, e02788 (2019); https://doi.org/10.1016/j.heliyon.2019.e02788
- B.F. Rizwana, J.C. Prasana and S. Muthu, Int. J. Mater. Sci., 12, 196 (2017).
- K. Fukui, Science, 218, 747 (1982); https://doi.org/10.1126/science.218.4574.747
- G. Klopman, J. Am. Chem. Soc., 90, 223 (1968); https://doi.org/10.1021/ja01004a002
- V.K. Rastogi, M.A. Palafox, L. Mittal, N. Peica, W. Kiefer, K. Lang and S.P. Ojha, J. Raman Spectrosc., 38, 1227 (2007); https://doi.org/10.1002/jrs.1725
- R.G. Pearson, J. Chem. Sci., 117, 369 (2005); https://doi.org/10.1007/BF02708340
- M. Miar, A. Shiroudi, K. Pourshamsian, A.R. Oliaey and F. Hatamjafari, J. Chem. Res., 45, 147 (2021); https://doi.org/10.1177/1747519820932091
- P. Manjusha, J.C. Prasana, S. Muthu and B.F. Rizwana, Chem. Data Coll., 20, 100191 (2019); https://doi.org/10.1016/j.cdc.2019.100191
- R. Rijal, M. Sah and H.P. Lamichhane, Heliyon, 9, e14801 (2023); https://doi.org/10.1016/j.heliyon.2023.e14801
- R.G. Parr, L.V. Szentpály and S. Liu, J. Am. Chem. Soc., 121, 1922 (1999); https://doi.org/10.1021/ja983494x
- S.R. Gadre, C.H. Suresh and N. Mohan, Molecules, 26, 3289 (2021); https://doi.org/10.3390/molecules26113289
- K. Vedhapriya, G. Balaji, S. Sakthivel, S. Javed, M. Thirunavukkarasu and S. Muthu, Chem. Phys. Impact, 7, 100262 (2023); https://doi.org/10.1016/j.chphi.2023.100262
- B. Gopia and V. Vijayakumar, RSC Adv., 14, 13218 (2024); https://doi.org/10.1039/D4RA02151G
- D.E. Arthur and A. Uzairu, J. King Saud Univ. Sci., 31, 1151 (2019); https://doi.org/10.1016/j.jksus.2019.01.011
- J.D.D. Tarika, X.D.D. Dexlin, S. Madhankumar, D.D. Jayanthi and T.J. Beaula, Spectrochim. Acta A Mol. Biomol. Spectrosc., 259, 119907 (2021); https://doi.org/10.1016/j.saa.2021.119907
- S.N. Steinmann, Y. Mo and C. Corminboeuf, Phys. Chem. Chem. Phys., 13, 20584 (2011); https://doi.org/10.1039/c1cp21055f
- E.R. Johnson, S. Keinan, P. Mori-Sánchez, J. Contreras-García, A.J. Cohen and W. Yang, J. Am. Chem. Soc., 132, 6498 (2010); https://doi.org/10.1021/ja100936w
- M. Thirunavukkarasu, P. Prabakaran, A. Saral, S. Kadaikunnan, N.S. Alharbi, A.S. Kazachenko and S. Muthu, J. Mol. Liq., 380, 121714 (2023); https://doi.org/10.1016/j.molliq.2023.121714
- K. Rayene, D. Imane, B. Abdelaziz, N. Leila, M. Fatiha, G. Abdelkrim, G. Bouzid, L. Ismahan, H. Brahim and O. Rabah, J. Mol. Struct., 1249, 131565 (2022); https://doi.org/10.1016/j.molstruc.2021.131565
- E. Eunice, J.C. Prasana, S. Muthu and A. Anuradha, Polycycl. Aromat. Compd., 43, 5747 (2023); https://doi.org/10.1080/10406638.2022.2107688
- R.C. Wade and P.J. Goodford, Prog. Clin. Biol. Res., 289, 433 (1989).
- F. Weinhold and C.R. Landis, Chem. Educ. Res. Pract., 2, 91 (2001); https://doi.org/10.1039/B1RP90011K
- J. Cummings, Y. Zhou, G. Lee, K. Zhong, J. Fonseca and F. Cheng, Alzheimers Dement., 10, e12465 (2024); https://doi.org/10.1002/trc2.12465
- S. Muthu and J. Uma Maheswari, Spectrochim. Acta A Mol. Biomol. Spectrosc., 92, 154 (2012); https://doi.org/10.1016/j.saa.2012.02.056
- R.S. Mulliken, J. Chem. Phys., 23, 1833 (1955); https://doi.org/10.1063/1.1740588
- S. Govindarajan and P.B. Nagabalasubramanian, J. Adv. Sci. Eng., 2, 75 (2015).
- G. Venkatesh, M. Govindaraju, C. Kamal, P. Vennila and S.A.V.A. Kaya, RSC Adv., 7, 1401 (2017); https://doi.org/10.1039/C6RA25535C
- A.L. Fussell, A. Isomaki and C.J. Strachan, Am. Pharm. Rev., 16, 54 (2013).
- E. Eunice, J.C. Prasana, S. Kadaikunnan, N.S. Alharbi and S. Muthu, J. Mol. Struct., 1319, 139354 (2025); https://doi.org/10.1016/j.molstruc.2024.139354
- A.K. Pandey, K.K. Pandey, D.D. Dubey, V. Singh and A. Dwivedi, J. Mol. Liq., 420, 126839 (2025); https://doi.org/10.1016/j.molliq.2024.126839
- V. Parodi, E. Jacchetti, R. Osellame, G. Cerullo, D. Polli and M.T. Raimondi, Front. Bioeng. Biotechnol., 8, 585363 (2020); https://doi.org/10.3389/fbioe.2020.585363
- R. Kato, W. Zeng, V.B. Siramshetty, J. Williams, M. Kabir, N. Hagen, E.C. Padilha, A.Q. Wang, E.A. Mathé, X. Xu and P. Shah, Front. Pharmacol., 14, 1291246 (2023); https://doi.org/10.3389/fphar.2023.1291246
- A. Daina and V. Zoete, ChemMedChem, 11, 1117 (2016); https://doi.org/10.1002/cmdc.201600182
- H. Pajouhesh and G.R. Lenz, NeuroRx, 2, 541 (2005); https://doi.org/10.1602/neurorx.2.4.541
- S. Shityakov, W. Neuhaus, T. Dandekar and C. Förster, Int. J. Comput. Biol. Drug Des., 6, 146 (2013); https://doi.org/10.1504/IJCBDD.2013.052195
- M. Elmeliegy, M. Vourvahis, C. Guo and D.D. Wang, Clin. Pharmacokinet., 59, 699 (2020); https://doi.org/10.1007/s40262-020-00867-1
- G. Miebs, A. Mielniczuk, M. Kadziñski and R.A. Bachorz, Appl. Sci., 14, 9966 (2024); https://doi.org/10.3390/app14219966
- V. Ivanovic, M. Ranèic, B. Arsic and A. Pavlovic, Chemia Naissensis, 3, 171 (2020).
- A. Bhargava, P. Shrivastava and A. Tilwari, Future J. Pharm. Sci., 7, 1 (2021); https://doi.org/10.1186/s43094-020-00150-x
- J. Van Meerloo, G.J.L. Kaspers and J. Cloos, Methods Mol. Biol., 731, 237 (2011); https://doi.org/10.1007/978-1-61779-080-5_20
- L. Florento, R. Matias, E. Tuano, K. Santiago, F. Cruz and A. Tuazon, Int. J. Biomed. Sci., 8, 76 (2012); https://doi.org/10.59566/IJBS.2012.8076
- H.M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T.N. Bhat, H. Weissig, I.N. Shindyalov, P.E. Bourne, Nucleic Acids Res., 28, 235 (2000); https://doi.org/10.1093/nar/28.1.235
- R.W. Hooft, C. Sander and G. Vriend, Bioinformatics, 13, 425 (1997); https://doi.org/10.1093/bioinformatics/13.4.425
- D.S. Spassov, Int. J. Mol. Sci., 25, 7124 (2024); https://doi.org/10.3390/ijms25137124
- A. Sethi, K. Joshi, K. Sasikala and M. Alvala, Molecular Docking in Modern Drug Discovery: Principles and Recent Applications, In: Drug Discovery Development-New Advances, IntechOpen, pp. 1-21 (2019).
- L.G. Ferreira, R.N. Dos Santos, G. Oliva and A.D. Andricopulo, Molecules, 20, 13384 (2015); https://doi.org/10.3390/molecules200713384
- U. Neumann, M. Ufer, L.H. Jacobson, M.-L. Rouzade Dominguez, G. Huledal, C. Kolly, R.M. Lüönd, R. Machauer, S.J. Veenstra, K. Hurth, H. Rueeger, M. Tintelnot-Blomley, M. Staufenbiel, D.R. Shimshek, L. Perrot, W. Frieauff, V. Dubost, H. Schiller, B. Vogg, K. Beltz, A. Avrameas, S. Kretz, N. Pezous, J.-M. Rondeau, N. Beckmann, A. Hartmann, S. Vormfelde, O.J. David, B. Galli, R. Ramos, A. Graf and C. Lopez-Lopez, EMBO Mol. Med., 10, e9316 (2018); https://doi.org/10.15252/emmm.201809316
- J.-P. Colletier, D. Fournier, H.M. Greenblatt, J. Stojan, J.L. Sussman, G. Zaccai, I. Silman and M. Weik, EMBO J., 25, 2746 (2006); https://doi.org/10.1038/sj.emboj.7601175
- National Center for Biotechnology Information. PubChem Compound Summary for CID 9651, Galantamine. Accessed 18 November, 2024; https://pubchem.ncbi.nlm.nih.gov/compound/Galantamine
- R.T. Bhagat, S.R. Butle, D.S. Khobragade, S.B. Wankhede, C.C. Prasad, D.S. Mahure and A.V. Armarkar, J. Pharm. Res. Int., 33, 46 (2021); https://doi.org/10.9734/jpri/2021/v33i30B31639
References
Alzheimer’s Association, Alzheimers Dement., 19, 1 (2023); https://doi.org/10.1002/alz.12925
Q. Wu, D.-X. Fu, A.-J. Hou, G.-Q. Lei, Z.-J. Liu, J.-K. Chen and T.-S. Zhou, Chem. Pharm. Bull., 53, 1065 (2005); https://doi.org/10.1248/cpb.53.1065
N. Soni, V.K. Lal, S. Agrawal, S. Kadam and H. Verma, Int. J. Pharm. Sci. Res., 8, 2407 (2012).
D.A. Baranenko, M.K. Kurbonova, W. Lu and J. Jing, in eds.: J. Akhtar, M. Sarwat and F. Bashir, Plants of Chinese Origin for the Management of Neurodegenerative Diseases in the Elderly, In: Medicinal Plants for the Management of Neurodegenerative Diseases, CRC Press, edn 1, pp. 64-75 (2024).
A.A. Farooqi, G. Butt, S.A. El-Zahaby, R. Attar, U.Y. Sabitaliyevich, J.J. Jovic, K.-F. Tang, H. Naureen and B. Xu, Pharmacol. Res., 160, 105188 (2020); https://doi.org/10.1016/j.phrs.2020.105188
J. Hardy and D.J. Selkoe, Science, 297, 353 (2002); https://doi.org/10.1126/science.1072994
D.D. Perrin, B. Dempsey and E.P. Serjeant, pKa Prediction for Organic Acids and Bases, Chapman and Hall: London, vol. 1 (1981).
B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts and P. Walter, Molecular Biology of the Cell, Garland Science, New York, edn 4 (2002).
D.L. Nelson, A.L. Lehninger and M.M. Cox, Lehninger Principles of Biochemistry, Macmillan (2008).
C.P. Miller and E. Peter Stang, Mol. Pharmacol., 90, 713 (2022); https://doi.org/10.1124/mol.121.120246
S. Sharma, B. Nehru and A. Saini, Neurochem. Int., 108, 481 (2017); https://doi.org/10.1016/j.neuint.2017.06.011
S. Sharma and V. Bhatia, Curr. Pharm. Des., 27, 2848 (2021); https://doi.org/10.2174/1381612826666200928161721
M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery Jr., J.E. Peralta, F. Ogliaro, J.J. Heyd, M. Bearpark, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S. S. Iyengar, M. Cossi, J. Tomasi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, Ö. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski and D. J. Fox, Gaussian 09, Revision B.01, Gaussian Inc. Wallingford, CT (2009).
R. Dennington, T. Keith and J. Millam, Gauss View, Version 5. Semichem Inc., Shawnee Mission (2009).
M.H. Jamróz, Biomol., 114, 220 (2013).
F. Cuenú, N. Muñoz-Patiño, J.E. Torres, R. Abonia, R.A. Toscano and J. Cobo, J. Mol. Struct., 1148, 557 (2017); https://doi.org/10.1016/j.molstruc.2017.07.038
T. Lu and F. Chen, J. Comput. Chem., 33, 580 (2012); https://doi.org/10.1002/jcc.22885
W. Humphrey, A. Dalke and K. Schulten, J. Mol. Graph., 14, 33 (1996); https://doi.org/10.1016/0263-7855(96)00018-5
A.E. Reed, L.A. Curtiss and F. Weinhold, Chem. Rev., 88, 899 (1988); https://doi.org/10.1021/cr00088a005
A. Daina, O. Michielin and V. Zoete, Sci. Rep., 7, 42717 (2017); https://doi.org/10.1038/srep42717
D.A. Filimonov, A.A. Lagunin, T.A. Gloriozova, D.S. Druzhilovskii, A.V. Rudik, P.V. Pogodin and V.V. Poroikov, Chem. Heterocycl. Compd., 50, 444 (2014); https://doi.org/10.1007/s10593-014-1496-1
R.A. Laskowski, M.W. MacArthur, D.S. Moss and J.M. Thornton, J. Appl. Cryst., 26, 283 (1993); https://doi.org/10.1107/S0021889892009944
R. Huey, G.M. Morris and S. Forli, Using AutoDock 4 and AutoDock Vina with AutoDockTools: A Tutorial, The Scripps Research Institute Molecular Graphics Laboratory, California, USA (2012).
D. Biovia, H. Berman, J. Westbrook, Z. Feng, G. Gilliland, T. Bhat and T.J.T.J.o.C.P. Richmond, Dassault Systèmes BIOVIA, Discovery Studio Visualizer, v. 17.2, San Diego: Dassault Systèmes, 2016, 10 (2000).
P. Banerjee, E. Kemmler, M. Dunkel and R. Preissner, Nucleic Acids Res., 52(W1), W513 (2024); https://doi.org/10.1093/nar/gkae303
A.E. Blanchard, D. Bhowmik, Z. Fox, J. Gounley, J. Glaser, B.S. Akpa and S. Irle, J. Cheminform., 15, 59 (2023); https://doi.org/10.1186/s13321-023-00719-7
P. Schneider, W.P. Walters, A.T. Plowright, N. Sieroka, J. Listgarten, R.A. Goodnow Jr., J. Fisher, J.M. Jansen, J.S. Duca, T.S. Rush, M. Zentgraf, J.E. Hill, E. Krutoholow, M. Kohler, J. Blaney, K. Funatsu, C. Luebkemann and G. Schneider, Nat. Rev. Drug Discov., 19, 353 (2020); https://doi.org/10.1038/s41573-019-0050-3
S. Scheiner, Phys. Chem. Chem. Phys., 13, 13860 (2011); https://doi.org/10.1039/c1cp20427k
G.-J. Linker, P.T. van Duijnen and R. Broer, J. Phys. Chem. A, 124, 1306 (2020); https://doi.org/10.1021/acs.jpca.9b10248
A. Orlando, F. Franceschini, C. Muscas, S. Pidkova, M. Bartoli, M. Rovere and A. Tagliaferro, Chemosensors, 9, 262 (2021); https://doi.org/10.3390/chemosensors9090262
S. Zhang, Y. Qi, S.P.H. Tan, R. Bi and M. Olivo, Biosensors, 13, 557 (2023); https://doi.org/10.3390/bios13050557
I.M. Alecu, J. Zheng, Y. Zhao and D.G. Truhlar, J. Chem. Theory Comput., 6, 2872 (2010); https://doi.org/10.1021/ct100326h
G. Bharathy, J.C. Prasana, V.S.J. Reeda, M. Prasath and A. Manikandan, Chem. Phys. Impact, 8, 100558 (2024); https://doi.org/10.1016/j.chphi.2024.100558
P.S. Kalsi, Spectroscopy of Organic Compounds, New Age International, New Delhi, India (2007).
A. Kumar, M. Khandelwal, S.K. Gupta, V. Kumar and R. Rani, in eds.: G. Misra, Fourier Transform Infrared Spectroscopy: Data Interpretation and Applications in Structure Elucidation and Analysis of Small Mole-cules and Nanostructures; In: Data Processing Handbook for Complex Biological Data Sources, Academic Press, Chap. 6, pp. 77-96 (2019).
S. Yadav, S. Banik and M.D. Prasad, Phys. Chem. Chem. Phys., 23, 9176 (2021); https://doi.org/10.1039/D0CP01157F
D. Michalska, D.C. Bieñko, A.J. Abkowicz-Bieñko and Z. Latajka, J. Phys. Chem., 100, 17786 (1996); https://doi.org/10.1021/jp961376v
D. Kennepohl, S. Farmer and W. Reusch, Infrared Spectra of Some Common Functional Groups, LibreTexts: Chemistry (2020).
K. Hemachandran, P. Anbusrinivasan, S. Ramalingam, R. Aarthi and C.K. Nithya, Heliyon, 5, e02788 (2019); https://doi.org/10.1016/j.heliyon.2019.e02788
B.F. Rizwana, J.C. Prasana and S. Muthu, Int. J. Mater. Sci., 12, 196 (2017).
K. Fukui, Science, 218, 747 (1982); https://doi.org/10.1126/science.218.4574.747
G. Klopman, J. Am. Chem. Soc., 90, 223 (1968); https://doi.org/10.1021/ja01004a002
V.K. Rastogi, M.A. Palafox, L. Mittal, N. Peica, W. Kiefer, K. Lang and S.P. Ojha, J. Raman Spectrosc., 38, 1227 (2007); https://doi.org/10.1002/jrs.1725
R.G. Pearson, J. Chem. Sci., 117, 369 (2005); https://doi.org/10.1007/BF02708340
M. Miar, A. Shiroudi, K. Pourshamsian, A.R. Oliaey and F. Hatamjafari, J. Chem. Res., 45, 147 (2021); https://doi.org/10.1177/1747519820932091
P. Manjusha, J.C. Prasana, S. Muthu and B.F. Rizwana, Chem. Data Coll., 20, 100191 (2019); https://doi.org/10.1016/j.cdc.2019.100191
R. Rijal, M. Sah and H.P. Lamichhane, Heliyon, 9, e14801 (2023); https://doi.org/10.1016/j.heliyon.2023.e14801
R.G. Parr, L.V. Szentpály and S. Liu, J. Am. Chem. Soc., 121, 1922 (1999); https://doi.org/10.1021/ja983494x
S.R. Gadre, C.H. Suresh and N. Mohan, Molecules, 26, 3289 (2021); https://doi.org/10.3390/molecules26113289
K. Vedhapriya, G. Balaji, S. Sakthivel, S. Javed, M. Thirunavukkarasu and S. Muthu, Chem. Phys. Impact, 7, 100262 (2023); https://doi.org/10.1016/j.chphi.2023.100262
B. Gopia and V. Vijayakumar, RSC Adv., 14, 13218 (2024); https://doi.org/10.1039/D4RA02151G
D.E. Arthur and A. Uzairu, J. King Saud Univ. Sci., 31, 1151 (2019); https://doi.org/10.1016/j.jksus.2019.01.011
J.D.D. Tarika, X.D.D. Dexlin, S. Madhankumar, D.D. Jayanthi and T.J. Beaula, Spectrochim. Acta A Mol. Biomol. Spectrosc., 259, 119907 (2021); https://doi.org/10.1016/j.saa.2021.119907
S.N. Steinmann, Y. Mo and C. Corminboeuf, Phys. Chem. Chem. Phys., 13, 20584 (2011); https://doi.org/10.1039/c1cp21055f
E.R. Johnson, S. Keinan, P. Mori-Sánchez, J. Contreras-García, A.J. Cohen and W. Yang, J. Am. Chem. Soc., 132, 6498 (2010); https://doi.org/10.1021/ja100936w
M. Thirunavukkarasu, P. Prabakaran, A. Saral, S. Kadaikunnan, N.S. Alharbi, A.S. Kazachenko and S. Muthu, J. Mol. Liq., 380, 121714 (2023); https://doi.org/10.1016/j.molliq.2023.121714
K. Rayene, D. Imane, B. Abdelaziz, N. Leila, M. Fatiha, G. Abdelkrim, G. Bouzid, L. Ismahan, H. Brahim and O. Rabah, J. Mol. Struct., 1249, 131565 (2022); https://doi.org/10.1016/j.molstruc.2021.131565
E. Eunice, J.C. Prasana, S. Muthu and A. Anuradha, Polycycl. Aromat. Compd., 43, 5747 (2023); https://doi.org/10.1080/10406638.2022.2107688
R.C. Wade and P.J. Goodford, Prog. Clin. Biol. Res., 289, 433 (1989).
F. Weinhold and C.R. Landis, Chem. Educ. Res. Pract., 2, 91 (2001); https://doi.org/10.1039/B1RP90011K
J. Cummings, Y. Zhou, G. Lee, K. Zhong, J. Fonseca and F. Cheng, Alzheimers Dement., 10, e12465 (2024); https://doi.org/10.1002/trc2.12465
S. Muthu and J. Uma Maheswari, Spectrochim. Acta A Mol. Biomol. Spectrosc., 92, 154 (2012); https://doi.org/10.1016/j.saa.2012.02.056
R.S. Mulliken, J. Chem. Phys., 23, 1833 (1955); https://doi.org/10.1063/1.1740588
S. Govindarajan and P.B. Nagabalasubramanian, J. Adv. Sci. Eng., 2, 75 (2015).
G. Venkatesh, M. Govindaraju, C. Kamal, P. Vennila and S.A.V.A. Kaya, RSC Adv., 7, 1401 (2017); https://doi.org/10.1039/C6RA25535C
A.L. Fussell, A. Isomaki and C.J. Strachan, Am. Pharm. Rev., 16, 54 (2013).
E. Eunice, J.C. Prasana, S. Kadaikunnan, N.S. Alharbi and S. Muthu, J. Mol. Struct., 1319, 139354 (2025); https://doi.org/10.1016/j.molstruc.2024.139354
A.K. Pandey, K.K. Pandey, D.D. Dubey, V. Singh and A. Dwivedi, J. Mol. Liq., 420, 126839 (2025); https://doi.org/10.1016/j.molliq.2024.126839
V. Parodi, E. Jacchetti, R. Osellame, G. Cerullo, D. Polli and M.T. Raimondi, Front. Bioeng. Biotechnol., 8, 585363 (2020); https://doi.org/10.3389/fbioe.2020.585363
R. Kato, W. Zeng, V.B. Siramshetty, J. Williams, M. Kabir, N. Hagen, E.C. Padilha, A.Q. Wang, E.A. Mathé, X. Xu and P. Shah, Front. Pharmacol., 14, 1291246 (2023); https://doi.org/10.3389/fphar.2023.1291246
A. Daina and V. Zoete, ChemMedChem, 11, 1117 (2016); https://doi.org/10.1002/cmdc.201600182
H. Pajouhesh and G.R. Lenz, NeuroRx, 2, 541 (2005); https://doi.org/10.1602/neurorx.2.4.541
S. Shityakov, W. Neuhaus, T. Dandekar and C. Förster, Int. J. Comput. Biol. Drug Des., 6, 146 (2013); https://doi.org/10.1504/IJCBDD.2013.052195
M. Elmeliegy, M. Vourvahis, C. Guo and D.D. Wang, Clin. Pharmacokinet., 59, 699 (2020); https://doi.org/10.1007/s40262-020-00867-1
G. Miebs, A. Mielniczuk, M. Kadziñski and R.A. Bachorz, Appl. Sci., 14, 9966 (2024); https://doi.org/10.3390/app14219966
V. Ivanovic, M. Ranèic, B. Arsic and A. Pavlovic, Chemia Naissensis, 3, 171 (2020).
A. Bhargava, P. Shrivastava and A. Tilwari, Future J. Pharm. Sci., 7, 1 (2021); https://doi.org/10.1186/s43094-020-00150-x
J. Van Meerloo, G.J.L. Kaspers and J. Cloos, Methods Mol. Biol., 731, 237 (2011); https://doi.org/10.1007/978-1-61779-080-5_20
L. Florento, R. Matias, E. Tuano, K. Santiago, F. Cruz and A. Tuazon, Int. J. Biomed. Sci., 8, 76 (2012); https://doi.org/10.59566/IJBS.2012.8076
H.M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T.N. Bhat, H. Weissig, I.N. Shindyalov, P.E. Bourne, Nucleic Acids Res., 28, 235 (2000); https://doi.org/10.1093/nar/28.1.235
R.W. Hooft, C. Sander and G. Vriend, Bioinformatics, 13, 425 (1997); https://doi.org/10.1093/bioinformatics/13.4.425
D.S. Spassov, Int. J. Mol. Sci., 25, 7124 (2024); https://doi.org/10.3390/ijms25137124
A. Sethi, K. Joshi, K. Sasikala and M. Alvala, Molecular Docking in Modern Drug Discovery: Principles and Recent Applications, In: Drug Discovery Development-New Advances, IntechOpen, pp. 1-21 (2019).
L.G. Ferreira, R.N. Dos Santos, G. Oliva and A.D. Andricopulo, Molecules, 20, 13384 (2015); https://doi.org/10.3390/molecules200713384
U. Neumann, M. Ufer, L.H. Jacobson, M.-L. Rouzade Dominguez, G. Huledal, C. Kolly, R.M. Lüönd, R. Machauer, S.J. Veenstra, K. Hurth, H. Rueeger, M. Tintelnot-Blomley, M. Staufenbiel, D.R. Shimshek, L. Perrot, W. Frieauff, V. Dubost, H. Schiller, B. Vogg, K. Beltz, A. Avrameas, S. Kretz, N. Pezous, J.-M. Rondeau, N. Beckmann, A. Hartmann, S. Vormfelde, O.J. David, B. Galli, R. Ramos, A. Graf and C. Lopez-Lopez, EMBO Mol. Med., 10, e9316 (2018); https://doi.org/10.15252/emmm.201809316
J.-P. Colletier, D. Fournier, H.M. Greenblatt, J. Stojan, J.L. Sussman, G. Zaccai, I. Silman and M. Weik, EMBO J., 25, 2746 (2006); https://doi.org/10.1038/sj.emboj.7601175
National Center for Biotechnology Information. PubChem Compound Summary for CID 9651, Galantamine. Accessed 18 November, 2024; https://pubchem.ncbi.nlm.nih.gov/compound/Galantamine
R.T. Bhagat, S.R. Butle, D.S. Khobragade, S.B. Wankhede, C.C. Prasad, D.S. Mahure and A.V. Armarkar, J. Pharm. Res. Int., 33, 46 (2021); https://doi.org/10.9734/jpri/2021/v33i30B31639