Copyright (c) 2025 Sanoop Padinhattayil, K.Sheshappa Rai; Bibin Shaji

This work is licensed under a Creative Commons Attribution 4.0 International License.
Impact of Graphene Oxide and Zinc Oxide Nanofillers on Polyvinyl Alcohol Polymer Matrix
Corresponding Author(s) : Sanoop Padinhattayil
Asian Journal of Chemistry,
Vol. 37 No. 6 (2025): Vol 37 Issue 6, 2025
Abstract
This study offers a comparative analysis and analogy of polymer nanocomposites that utilize the well-established polymer matrix polyvinyl alcohol (PVA), enhanced with graphene oxide (GO) and zinc oxide (ZnO) nanoparticles as nano-fillers. The polymer nanocomposite films were fabricated using a solution casting technique and were subsequently characterized through infrared spectroscopy, X-ray diffraction (XRD) analysis, assessments of mechanical properties, thermal characterization and optical microscopy. The addition of GO and ZnO nanoparticles led to significant changes in the structural, thermal, mechanical and optical properties of the PVA polymer. Specifically, the thermal stability of the composite films showed improvement compared to pure PVA, although the mechanical analysis revealed a significant increase in tensile strength.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- K.A. Williams, A.J. Boydstona and C.W. Bielawski, Chem. Soc. Rev., 36, 729 (2007); https://doi.org/10.1039/B601574N
- J.D. Fowler, M.J. Allen, V.C. Tung, Y. Yang, R.B. Kaner and B.H. Weiller, ACS Nano, 3, 301 (2009); https://doi.org/10.1021/nn800593m
- M. Liang, M. Zhi and L. Zhi, J. Mater. Chem., 19, 5871 (2009); https://doi.org/10.1039/b901551e
- S. Gahlot, P.P. Sharma, V. Kulshrestha and P.K. Jha, ACS Appl. Mater. Interfaces, 6, 5595 (2014); https://doi.org/10.1021/am5000504
- S. Gahlot and V. Kulshrestha, ACS Appl. Mater. Interfaces, 7, 264 (2015); https://doi.org/10.1021/am506033c
- S. Gahlot, P.P. Sharma and V. Kulshrestha, Sep. Sci. Technol., 50, 446 (2015); https://doi.org/10.1080/01496395.2014.973525
- K.S. Hemalatha, N. Parvatikar and K. Rukmani, Int. J. Adv. Sci. Tech., 5, 106 (2014); https://doi.org/10.3923/jeasci.2019.717.724
- J. Liang, Y. Huang, L. Zhang, Y. Wang, Y. Ma, T. Guo and Y. Chen, Adv. Funct. Mater., 19, 2297 (2009); https://doi.org/10.1002/adfm.200801776
- L. Zhang, Z. Wang, C. Xu, Y. Li, J. Gao, W. Wang and Y. Liu, J. Mater. Chem., 21, 10399 (2011); https://doi.org/10.1039/c0jm04043f
- K.M. Abu Hurayra–Lizu, M.W. Bari, F. Gulshan and M.R. Islam, Heliyon, 7, e06983 (2021); https://doi.org/10.1016/j.heliyon.2021.e06983
- H.J. Salavagione, G. Martínez and M.A. Gómez, J. Mater. Chem., 19, 5027 (2009); https://doi.org/10.1039/b904232f
- H.M. Kim, J.K. Lee and H.S. Lee, Thin Solid Films, 519, 7766 (2011); https://doi.org/10.1016/j.tsf.2011.06.016
- N. Wang, P.R. Chang, P. Zheng and X. Ma, Appl. Surf. Sci., 314, 815 (2014); https://doi.org/10.1016/j.apsusc.2014.07.075
- X. Zhao, Q. Zhang, D. Chen and P. Lu, Macromolecules, 43, 2357 (2010); https://doi.org/10.1021/ma902862u
- S. Safa, R. Sarraf-Mamoori and R. Azimirad, Adv. Mater. Res., 829, 577 (2013); https://doi.org/10.4028/www.scientific.net/AMR.829.577
- S. Raha and M. Ahmaruzzaman, Nanoscale Adv., 4, 1868 (2022); https://doi.org/10.1039/D1NA00880C
- Z.L. Wang, Mater. Today, 7, 26 (2004); https://doi.org/10.1016/S1369-7021(04)00286-X
- A. Sedghi and N. Riyahi Noori, J. Ceram. Process. Res., 12, 752 (2011).
- S.A. Kumar and S.-M. Chen, Anal. Lett., 41, 141 (2008); https://doi.org/10.1080/00032710701792612
- R.G. Singh, N. Gautam, S.K. Gautam, V. Kumar, A. Kapoor and F. Singh, J. Renew. Sustain. Energy, 5, 033134 (2013); https://doi.org/10.1063/1.4811818
- S. Padinhattayil and K.S. Rai, Asian J. Chem., 32, 881 (2020); https://doi.org/10.14233/ajchem.2020.22483
- W.S. Hummers Jr. and R.E. Offeman, J. Am. Chem. Soc., 80, 1339 (1958); https://doi.org/10.1021/ja01539a017
- W.M. Itano, J.J. Bollinger, J.N. Tan, B. Jelenkovic, X.-P. Huang and D.J. Wineland, Science, 279, 686 (1998); https://doi.org/10.1126/science.279.5351.686
- S.G. Rathod, R.F. Bhajantri, V. Ravindrachary, P.K. Pujari and T. Sheela, J. Adv. Dielectr., 4, 1450033 (2014); https://doi.org/10.1142/S2010135X14500337
- S.H. Rashmi, A. Raizada, G.M. Madhu, A.A. Kittur, R. Suresh and H.K. Sudhina, Plast. Rubber Compos., 44, 33 (2015); https://doi.org/10.1179/1743289814Y.0000000115
- J. Li, L. Shao, L. Yuan and Y. Wang, Mater. Des., 54, 520 (2014); https://doi.org/10.1016/j.matdes.2013.08.090
- J. Wang, C. Gao, Y. Zhang and Y. Wan, Mater. Sci. Eng. C, 30, 214 (2010); https://doi.org/10.1016/j.msec.2009.10.006
- C.C. Yang, Y.J. Lee and J.M. Yang, J. Power Sources, 188, 30 (2009); https://doi.org/10.1016/j.jpowsour.2008.11.098
- J. George, K.V. Ramana, A.S. Bawa and Siddaramaiah, Int. J. Biol. Macromol., 48, 50 (2011); https://doi.org/10.1016/j.ijbiomac.2010.09.013
- X.M. Sui, C.L. Shao and Y.C. Liu, Appl. Phys. Lett., 87, 113115 (2005); https://doi.org/10.1063/1.2048808
- H.N. Chandrakala, B. Ramaraj, S. Shivakumaraiah, G.M. Madhu and F.N.M. Siddaramaiah, J. Mater. Sci., 47, 8076 (2012); https://doi.org/10.1007/s10853-012-6701-y
- S.C. Liufu, H.N. Xiao and Y.P. Li, Polym. Degrad. Stab., 87, 103 (2005); https://doi.org/10.1016/j.polymdegradstab.2004.07.011
- T.E. Motaung, A.S. Luyt, F. Bondioli, M. Messori, M.L. Saladino, A. Spinella, G. Nasillo and E. Caponetti, Polym. Degrad. Stab., 97, 1325 (2012); https://doi.org/10.1016/j.polymdegradstab.2012.05.022
- T. Ramanathan, A.A. Abdala, S. Stankovich, D.A. Dikin, M. Herrera-Alonso, R.D. Piner, D.H. Adamson, H.C. Schniepp, X. Chen, R.S. Ruoff, S.T. Nguyen, I.A. Aksay, R.K. Prud’Homme and L.C. Brinson, Nat. Nanotechnol., 3, 327 (2008); https://doi.org/10.1038/nnano.2008.96
- S.S. Ray and M. Bousmina, Macromol. Chem. Phys., 207, 1207 (2006); https://doi.org/10.1002/macp.200600163
- C. Lee, X. Wei, J.W. Kysar and J. Hone, Science, 321, 385 (2008); https://doi.org/10.1126/science.1157996
- C. Gómez-Navarro, M. Burghard and K. Kern, Nano Lett., 8, 2045 (2008); https://doi.org/10.1021/nl801384y
- X. Li, Y. Xing, Y. Jiang, Y. Ding and W. Li, Int. J. Food Sci. Technol., 44, 2161 (2009); https://doi.org/10.1111/j.1365-2621.2009.02055.x
- P.W. Davis and T.S. Shilliday, Phys. Rev., 118, 1020 (1960); https://doi.org/10.1103/PhysRev.118.1020
- A.B. Bourlinos, D. Gournis, D. Petridis, T. Szabó, A. Szeri and I. Dékány, Langmuir, 19, 6050 (2003); https://doi.org/10.1021/la026525h
- N. Rajeswari, S. Selvasekarapandian, C. Sanjeeviraja, J. Kawamura and S. Asath Bahadur, Polym. Bull., 71, 1061 (2014); https://doi.org/10.1007/s00289-014-1111-8
- G.K.M. Thutupalli and S.G. Tomlin, J. Phys. D Appl. Phys., 9, 1639 (1976); https://doi.org/10.1088/0022-3727/9/11/010
- S.S. Nair, M. Mathews and M.R. Anantharaman, Chem. Phys. Lett., 406, 398 (2005); https://doi.org/10.1016/j.cplett.2005.02.107
- B. Suo, X. Su, J. Wu, D. Chen, A. Wang and Z. Guo, Mater. Chem. Phys., 119, 237 (2010); https://doi.org/10.1016/j.matchemphys.2009.08.054
- S. Dutta and B.N. Ganguly, J. Nanobiotechnol., 10, 29 (2012); https://doi.org/10.1186/1477-3155-10-29
- J. Kayathri, N. RaniMeiyammai, S. Rani, K.P. Bhuvana, K. Palanivelu and S.K. Nayak, J. Mater., 2013, 473217 (2013); https://doi.org/10.1155/2013/473217
- B.D. Cullity and R.J.P.T. Smoluchowski, Phys. Today, 10, 50 (1957); https://doi.org/10.1063/1.3060306
- R. Vijaya Kumar, R. Elgamiel, Y. Diamant, A. Gedanken and J. Norwig, Langmuir, 17, 1406 (2001); https://doi.org/10.1021/la001331s
- S. Mahendia, A.K. Tomar and S. Kumar, J. Alloys Compd., 508, 406 (2010); https://doi.org/10.1016/j.jallcom.2010.08.075
References
K.A. Williams, A.J. Boydstona and C.W. Bielawski, Chem. Soc. Rev., 36, 729 (2007); https://doi.org/10.1039/B601574N
J.D. Fowler, M.J. Allen, V.C. Tung, Y. Yang, R.B. Kaner and B.H. Weiller, ACS Nano, 3, 301 (2009); https://doi.org/10.1021/nn800593m
M. Liang, M. Zhi and L. Zhi, J. Mater. Chem., 19, 5871 (2009); https://doi.org/10.1039/b901551e
S. Gahlot, P.P. Sharma, V. Kulshrestha and P.K. Jha, ACS Appl. Mater. Interfaces, 6, 5595 (2014); https://doi.org/10.1021/am5000504
S. Gahlot and V. Kulshrestha, ACS Appl. Mater. Interfaces, 7, 264 (2015); https://doi.org/10.1021/am506033c
S. Gahlot, P.P. Sharma and V. Kulshrestha, Sep. Sci. Technol., 50, 446 (2015); https://doi.org/10.1080/01496395.2014.973525
K.S. Hemalatha, N. Parvatikar and K. Rukmani, Int. J. Adv. Sci. Tech., 5, 106 (2014); https://doi.org/10.3923/jeasci.2019.717.724
J. Liang, Y. Huang, L. Zhang, Y. Wang, Y. Ma, T. Guo and Y. Chen, Adv. Funct. Mater., 19, 2297 (2009); https://doi.org/10.1002/adfm.200801776
L. Zhang, Z. Wang, C. Xu, Y. Li, J. Gao, W. Wang and Y. Liu, J. Mater. Chem., 21, 10399 (2011); https://doi.org/10.1039/c0jm04043f
K.M. Abu Hurayra–Lizu, M.W. Bari, F. Gulshan and M.R. Islam, Heliyon, 7, e06983 (2021); https://doi.org/10.1016/j.heliyon.2021.e06983
H.J. Salavagione, G. Martínez and M.A. Gómez, J. Mater. Chem., 19, 5027 (2009); https://doi.org/10.1039/b904232f
H.M. Kim, J.K. Lee and H.S. Lee, Thin Solid Films, 519, 7766 (2011); https://doi.org/10.1016/j.tsf.2011.06.016
N. Wang, P.R. Chang, P. Zheng and X. Ma, Appl. Surf. Sci., 314, 815 (2014); https://doi.org/10.1016/j.apsusc.2014.07.075
X. Zhao, Q. Zhang, D. Chen and P. Lu, Macromolecules, 43, 2357 (2010); https://doi.org/10.1021/ma902862u
S. Safa, R. Sarraf-Mamoori and R. Azimirad, Adv. Mater. Res., 829, 577 (2013); https://doi.org/10.4028/www.scientific.net/AMR.829.577
S. Raha and M. Ahmaruzzaman, Nanoscale Adv., 4, 1868 (2022); https://doi.org/10.1039/D1NA00880C
Z.L. Wang, Mater. Today, 7, 26 (2004); https://doi.org/10.1016/S1369-7021(04)00286-X
A. Sedghi and N. Riyahi Noori, J. Ceram. Process. Res., 12, 752 (2011).
S.A. Kumar and S.-M. Chen, Anal. Lett., 41, 141 (2008); https://doi.org/10.1080/00032710701792612
R.G. Singh, N. Gautam, S.K. Gautam, V. Kumar, A. Kapoor and F. Singh, J. Renew. Sustain. Energy, 5, 033134 (2013); https://doi.org/10.1063/1.4811818
S. Padinhattayil and K.S. Rai, Asian J. Chem., 32, 881 (2020); https://doi.org/10.14233/ajchem.2020.22483
W.S. Hummers Jr. and R.E. Offeman, J. Am. Chem. Soc., 80, 1339 (1958); https://doi.org/10.1021/ja01539a017
W.M. Itano, J.J. Bollinger, J.N. Tan, B. Jelenkovic, X.-P. Huang and D.J. Wineland, Science, 279, 686 (1998); https://doi.org/10.1126/science.279.5351.686
S.G. Rathod, R.F. Bhajantri, V. Ravindrachary, P.K. Pujari and T. Sheela, J. Adv. Dielectr., 4, 1450033 (2014); https://doi.org/10.1142/S2010135X14500337
S.H. Rashmi, A. Raizada, G.M. Madhu, A.A. Kittur, R. Suresh and H.K. Sudhina, Plast. Rubber Compos., 44, 33 (2015); https://doi.org/10.1179/1743289814Y.0000000115
J. Li, L. Shao, L. Yuan and Y. Wang, Mater. Des., 54, 520 (2014); https://doi.org/10.1016/j.matdes.2013.08.090
J. Wang, C. Gao, Y. Zhang and Y. Wan, Mater. Sci. Eng. C, 30, 214 (2010); https://doi.org/10.1016/j.msec.2009.10.006
C.C. Yang, Y.J. Lee and J.M. Yang, J. Power Sources, 188, 30 (2009); https://doi.org/10.1016/j.jpowsour.2008.11.098
J. George, K.V. Ramana, A.S. Bawa and Siddaramaiah, Int. J. Biol. Macromol., 48, 50 (2011); https://doi.org/10.1016/j.ijbiomac.2010.09.013
X.M. Sui, C.L. Shao and Y.C. Liu, Appl. Phys. Lett., 87, 113115 (2005); https://doi.org/10.1063/1.2048808
H.N. Chandrakala, B. Ramaraj, S. Shivakumaraiah, G.M. Madhu and F.N.M. Siddaramaiah, J. Mater. Sci., 47, 8076 (2012); https://doi.org/10.1007/s10853-012-6701-y
S.C. Liufu, H.N. Xiao and Y.P. Li, Polym. Degrad. Stab., 87, 103 (2005); https://doi.org/10.1016/j.polymdegradstab.2004.07.011
T.E. Motaung, A.S. Luyt, F. Bondioli, M. Messori, M.L. Saladino, A. Spinella, G. Nasillo and E. Caponetti, Polym. Degrad. Stab., 97, 1325 (2012); https://doi.org/10.1016/j.polymdegradstab.2012.05.022
T. Ramanathan, A.A. Abdala, S. Stankovich, D.A. Dikin, M. Herrera-Alonso, R.D. Piner, D.H. Adamson, H.C. Schniepp, X. Chen, R.S. Ruoff, S.T. Nguyen, I.A. Aksay, R.K. Prud’Homme and L.C. Brinson, Nat. Nanotechnol., 3, 327 (2008); https://doi.org/10.1038/nnano.2008.96
S.S. Ray and M. Bousmina, Macromol. Chem. Phys., 207, 1207 (2006); https://doi.org/10.1002/macp.200600163
C. Lee, X. Wei, J.W. Kysar and J. Hone, Science, 321, 385 (2008); https://doi.org/10.1126/science.1157996
C. Gómez-Navarro, M. Burghard and K. Kern, Nano Lett., 8, 2045 (2008); https://doi.org/10.1021/nl801384y
X. Li, Y. Xing, Y. Jiang, Y. Ding and W. Li, Int. J. Food Sci. Technol., 44, 2161 (2009); https://doi.org/10.1111/j.1365-2621.2009.02055.x
P.W. Davis and T.S. Shilliday, Phys. Rev., 118, 1020 (1960); https://doi.org/10.1103/PhysRev.118.1020
A.B. Bourlinos, D. Gournis, D. Petridis, T. Szabó, A. Szeri and I. Dékány, Langmuir, 19, 6050 (2003); https://doi.org/10.1021/la026525h
N. Rajeswari, S. Selvasekarapandian, C. Sanjeeviraja, J. Kawamura and S. Asath Bahadur, Polym. Bull., 71, 1061 (2014); https://doi.org/10.1007/s00289-014-1111-8
G.K.M. Thutupalli and S.G. Tomlin, J. Phys. D Appl. Phys., 9, 1639 (1976); https://doi.org/10.1088/0022-3727/9/11/010
S.S. Nair, M. Mathews and M.R. Anantharaman, Chem. Phys. Lett., 406, 398 (2005); https://doi.org/10.1016/j.cplett.2005.02.107
B. Suo, X. Su, J. Wu, D. Chen, A. Wang and Z. Guo, Mater. Chem. Phys., 119, 237 (2010); https://doi.org/10.1016/j.matchemphys.2009.08.054
S. Dutta and B.N. Ganguly, J. Nanobiotechnol., 10, 29 (2012); https://doi.org/10.1186/1477-3155-10-29
J. Kayathri, N. RaniMeiyammai, S. Rani, K.P. Bhuvana, K. Palanivelu and S.K. Nayak, J. Mater., 2013, 473217 (2013); https://doi.org/10.1155/2013/473217
B.D. Cullity and R.J.P.T. Smoluchowski, Phys. Today, 10, 50 (1957); https://doi.org/10.1063/1.3060306
R. Vijaya Kumar, R. Elgamiel, Y. Diamant, A. Gedanken and J. Norwig, Langmuir, 17, 1406 (2001); https://doi.org/10.1021/la001331s
S. Mahendia, A.K. Tomar and S. Kumar, J. Alloys Compd., 508, 406 (2010); https://doi.org/10.1016/j.jallcom.2010.08.075