Copyright (c) 2025 PRAVEEN KUMAR GUPTA PRAVEEN, Mr. Sunil, Dr. AMIT KUMAR, Dr. RAMESH KUMAR

This work is licensed under a Creative Commons Attribution 4.0 International License.
Oxidation of Styrene Catalyzed by Recyclable Polystyrene-Supported Pyrrole-2-Carboxaldehyde Metal Catalysts
Corresponding Author(s) : Praveen Kumar Gupta
Asian Journal of Chemistry,
Vol. 37 No. 6 (2025): Vol 37 Issue 6, 2025
Abstract
Polymer-supported heterogeneous catalysts were synthesized by anchoring pyrrole-2-carboxaldehyde on amino-methylated polystyrene and then loading V(IV), Mn(II), Ni(II) and Cu(II) ions on it. The resulting catalysts were characterized by CHNS analysis, FTIR, EDX, DRS, ESR and AAS spectral study confirming the successful immobilization of the metal complexes. The catalytic activity and selectivity of the polymer-supported catalysts were analyzed for the liquid phase oxidation of styrene mediated by H2O2 and tert-butyl hydroperoxide. The influence of reaction time, temperature and concentration of the catalyst for the oxidation of styrene were examined under optimal conditions (0.1 g catalyst; 6 h reaction time and 60 ºC temperature). A conversion rate of 96.5% was accomplished using a copper catalyst employing H2O2 as oxidant, while a selectivity of 90.1% for benzaldehyde formation was reached with a nickel catalyst utilizing tert-butyl hydroperoxide (TBHP) as oxidant. The mechanism of the oxidation of styrene in the presence of synthesized catalyst has also been proposed. The catalysts were recovered by simple filtration and reused four times without any significant loss in their activity, proving their truly heterogeneous nature.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- W.N.R.W. Isahak and A. Al-Amiery, Green Technol. Sustain., 2, 100078 (2024); https://doi.org/10.1016/j.grets.2024.100078
- J. Takaya, Chem Sci., 12, 1964 (2020); https://doi.org/10.1039/d0sc04238b
- J. Lu and P.H. Toy, Chem. Rev., 109, 815 (2009); https://doi.org/10.1021/cr8004444
- P.R. Sruthi, R. Roopak and S. Anas, ChemistrySelect, 8, e202204374 (2023); https://doi.org/10.1002/slct.202204374
- N. Haque, U. Mandi, S.M. Islam and N. Salam, Prog. Chem. Biol. Sci., 72, 72 (2023); https://doi.org/10.31674/book.2023pcbs008
- M. Nasrollahzadeh, N. Motahharifar, K. Pakzad, Z. Khorsandi, T. Baran, J. Wang, B. Kruppke and H.A. Khonakdar, Sci. Rep., 13, 3214 (2023); https://doi.org/10.1038/s41598-023-30198-7
- M. Sayin, M. Can and M. Imamoglu, J. Chem. Eng. Data, 66, 1132 (2021); https://doi.org/10.1021/acs.jced.0c00920
- S.M. Lakshminarayana, R. Boregowda and G. Virupaiah, Chem. Zvesti, 77, 3589 (2023); https://doi.org/10.1007/s11696-023-02721-7
- M.R. Maurya, M. Nandi, A. Patter, F. Avecilla and K. Ghosh, Catalysts, 13, 615 (2023); https://doi.org/10.3390/catal13030615
- S.M. Islam, P. Mondal, K. Tuhina, A.S. Roy, D. Hossain and S. Mondal, Transition Met. Chem., 35, 891 (2010); https://doi.org/10.1007/s11243-010-9409-3
- M.J. Madhura, A.S. Jeevan Chakravarthy, S. Hariprasad and V. Gayathri, Catal. Lett., 153, 1141 (2023); https://doi.org/10.1007/s10562-022-04055-7
- C. Yang and L. Cui, Green Energy Environ., 8, 1 (2023); https://doi.org/10.1016/j.gee.2022.03.004
- H. Jiang, S. Lu, X. Zhang, H. Peng, W. Dai and J. Qiao, Catal. Sci. Technol., 4, 2499 (2014); https://doi.org/10.1039/C4CY00436A
- M.J. Silva, J. Gomes, P. Ferreira and R.C. Martins, Water, 14, 825 (2022); https://doi.org/10.3390/w14050825
- V.B. Valodkar, G.L. Tembe, M. Ravindranathan and H.S. Rama, React. Funct. Polym., 56, 1 (2003); https://doi.org/10.1016/S1381-5148(03)00048-8
- T. Maharana, N. Nath, H.C. Pradhan, S. Mantri, A. Routaray and A.K. Sutar, React. Funct. Polym., 171, 105142 (2022); https://doi.org/10.1016/j.reactfunctpolym.2021.105142
- G.N. Wogan, Semin. Oncol., 24, 227 (1997).
- Y. Han, L. Wu, Q. Han, R. Zhang and J. Li, New J. Chem., 47, 3945 (2023); https://doi.org/10.1039/D2NJ05834K
- Q. Gazu, M. Shozi and P. Mpungose, MATEC Web Conf., EDP Sciences, 01004 (2023); https://doi.org/10.1051/matecconf/202337401004
- W. Zhang, L. Liu, H. Cheng, J. Zhu, X. Li, S. Ye and X. Li, Mater. Adv., 5, 1364 (2024); https://doi.org/10.1039/D3MA00682D
- M.A. Andrade and L.M.D.R.S. Martins, Molecules, 26, 1680 (2021); https://doi.org/10.3390/molecules26061680
- G. Vala, R.N. Jadeja, A. Patel and D. Choquesillo-Lazarte, Inorg. Chim. Acta, 563, 121925 (2024); https://doi.org/10.1016/j.ica.2024.121925
- W.J. Cui, Q. Zhao, H.T. Zhu, N. Hu, Y.Y. Ma, Z.G. Han and Y.G. Li, J. Coord. Chem., 73, 2521 (2020); https://doi.org/10.1080/00958972.2020.1821881
- M. Arian, H. Mollabagher, S. Taheri, A. Zamanian and S.A.H.S. Mousavi, Turk. J. Chem., 45, 1882 (2021); https://doi.org/10.3906/kim-2101-26
- M. Shebl, J. Mol. Struct., 1128, 79 (2017); https://doi.org/10.1016/j.molstruc.2016.08.056
- V.P. Singh, S. Singh and A. Katiyar, J. Enzyme Inhib. Med. Chem., 24, 577 (2009); https://doi.org/10.1080/14756360802318662
- M.K. Sahani, U. Yadava, O.P. Pandey and S.K. Sengupta, Spectrochim. Acta A Mol. Biomol. Spectrosc., 125, 189 (2014); https://doi.org/10.1016/j.saa.2014.01.041
- G. Lupascu, E. Pahontu, S. Shova, S.F. Bãrbuceanu, M. Badea, C. Paraschivescu, J. Neamtu, M. Dinu, R.V. Ancuceanu, D. Drãgãnescu and C.E. Dinu-Pîrvu, Appl. Organomet. Chem., 35, e6149 (2021); https://doi.org/10.1002/aoc.6149
- S.M. Islam, A.S. Roy, P. Mondal and N. Salam, J. Mol. Catal. Chem., 358, 38 (2012); https://doi.org/10.1016/j.molcata.2012.02.009
- T.H. Bennur, D. Srinivas and P. Ratnasamy, Micropor. Mesopor. Mater., 48, 111 (2001); https://doi.org/10.1016/S1387-1811(01)00345-6
References
W.N.R.W. Isahak and A. Al-Amiery, Green Technol. Sustain., 2, 100078 (2024); https://doi.org/10.1016/j.grets.2024.100078
J. Takaya, Chem Sci., 12, 1964 (2020); https://doi.org/10.1039/d0sc04238b
J. Lu and P.H. Toy, Chem. Rev., 109, 815 (2009); https://doi.org/10.1021/cr8004444
P.R. Sruthi, R. Roopak and S. Anas, ChemistrySelect, 8, e202204374 (2023); https://doi.org/10.1002/slct.202204374
N. Haque, U. Mandi, S.M. Islam and N. Salam, Prog. Chem. Biol. Sci., 72, 72 (2023); https://doi.org/10.31674/book.2023pcbs008
M. Nasrollahzadeh, N. Motahharifar, K. Pakzad, Z. Khorsandi, T. Baran, J. Wang, B. Kruppke and H.A. Khonakdar, Sci. Rep., 13, 3214 (2023); https://doi.org/10.1038/s41598-023-30198-7
M. Sayin, M. Can and M. Imamoglu, J. Chem. Eng. Data, 66, 1132 (2021); https://doi.org/10.1021/acs.jced.0c00920
S.M. Lakshminarayana, R. Boregowda and G. Virupaiah, Chem. Zvesti, 77, 3589 (2023); https://doi.org/10.1007/s11696-023-02721-7
M.R. Maurya, M. Nandi, A. Patter, F. Avecilla and K. Ghosh, Catalysts, 13, 615 (2023); https://doi.org/10.3390/catal13030615
S.M. Islam, P. Mondal, K. Tuhina, A.S. Roy, D. Hossain and S. Mondal, Transition Met. Chem., 35, 891 (2010); https://doi.org/10.1007/s11243-010-9409-3
M.J. Madhura, A.S. Jeevan Chakravarthy, S. Hariprasad and V. Gayathri, Catal. Lett., 153, 1141 (2023); https://doi.org/10.1007/s10562-022-04055-7
C. Yang and L. Cui, Green Energy Environ., 8, 1 (2023); https://doi.org/10.1016/j.gee.2022.03.004
H. Jiang, S. Lu, X. Zhang, H. Peng, W. Dai and J. Qiao, Catal. Sci. Technol., 4, 2499 (2014); https://doi.org/10.1039/C4CY00436A
M.J. Silva, J. Gomes, P. Ferreira and R.C. Martins, Water, 14, 825 (2022); https://doi.org/10.3390/w14050825
V.B. Valodkar, G.L. Tembe, M. Ravindranathan and H.S. Rama, React. Funct. Polym., 56, 1 (2003); https://doi.org/10.1016/S1381-5148(03)00048-8
T. Maharana, N. Nath, H.C. Pradhan, S. Mantri, A. Routaray and A.K. Sutar, React. Funct. Polym., 171, 105142 (2022); https://doi.org/10.1016/j.reactfunctpolym.2021.105142
G.N. Wogan, Semin. Oncol., 24, 227 (1997).
Y. Han, L. Wu, Q. Han, R. Zhang and J. Li, New J. Chem., 47, 3945 (2023); https://doi.org/10.1039/D2NJ05834K
Q. Gazu, M. Shozi and P. Mpungose, MATEC Web Conf., EDP Sciences, 01004 (2023); https://doi.org/10.1051/matecconf/202337401004
W. Zhang, L. Liu, H. Cheng, J. Zhu, X. Li, S. Ye and X. Li, Mater. Adv., 5, 1364 (2024); https://doi.org/10.1039/D3MA00682D
M.A. Andrade and L.M.D.R.S. Martins, Molecules, 26, 1680 (2021); https://doi.org/10.3390/molecules26061680
G. Vala, R.N. Jadeja, A. Patel and D. Choquesillo-Lazarte, Inorg. Chim. Acta, 563, 121925 (2024); https://doi.org/10.1016/j.ica.2024.121925
W.J. Cui, Q. Zhao, H.T. Zhu, N. Hu, Y.Y. Ma, Z.G. Han and Y.G. Li, J. Coord. Chem., 73, 2521 (2020); https://doi.org/10.1080/00958972.2020.1821881
M. Arian, H. Mollabagher, S. Taheri, A. Zamanian and S.A.H.S. Mousavi, Turk. J. Chem., 45, 1882 (2021); https://doi.org/10.3906/kim-2101-26
M. Shebl, J. Mol. Struct., 1128, 79 (2017); https://doi.org/10.1016/j.molstruc.2016.08.056
V.P. Singh, S. Singh and A. Katiyar, J. Enzyme Inhib. Med. Chem., 24, 577 (2009); https://doi.org/10.1080/14756360802318662
M.K. Sahani, U. Yadava, O.P. Pandey and S.K. Sengupta, Spectrochim. Acta A Mol. Biomol. Spectrosc., 125, 189 (2014); https://doi.org/10.1016/j.saa.2014.01.041
G. Lupascu, E. Pahontu, S. Shova, S.F. Bãrbuceanu, M. Badea, C. Paraschivescu, J. Neamtu, M. Dinu, R.V. Ancuceanu, D. Drãgãnescu and C.E. Dinu-Pîrvu, Appl. Organomet. Chem., 35, e6149 (2021); https://doi.org/10.1002/aoc.6149
S.M. Islam, A.S. Roy, P. Mondal and N. Salam, J. Mol. Catal. Chem., 358, 38 (2012); https://doi.org/10.1016/j.molcata.2012.02.009
T.H. Bennur, D. Srinivas and P. Ratnasamy, Micropor. Mesopor. Mater., 48, 111 (2001); https://doi.org/10.1016/S1387-1811(01)00345-6