Copyright (c) 2025 MITHIL KOTYAGOL, J TONANNAVAR, JAYASHREE TONANNAVAR

This work is licensed under a Creative Commons Attribution 4.0 International License.
Computational and Experimental Studies on Double H-Bonded Zwitterion Dimer Model for L-2-Aminoadipic Acid
Corresponding Author(s) : Jayashree Tonannavar
Asian Journal of Chemistry,
Vol. 37 No. 6 (2025): Vol 37 Issue 6, 2025
Abstract
A double H-bonded zwitterion dimer structure is proposed for L-2-aminoadipic acid. The intermolecular N–H···O and O–H···O bond interactions whose vibrational modes are observed as striking IR absorption spectral features were analyzed. From molecular dynamics simulation, radial distribution function analysis showed values of 1.57 Å for the N–H···O bond and 1.68 Å for the O–H···O bond. Similarly, the radius of gyration analysis showed average values of 1.48 nm for the N–H···O bond and 1.57 nm for the O–H···O bond. DFT calculations at the B3LYP/6-311++G(d,p) level with implicit water solvation yielded the most stable zwitterion dimer. DFT results showed optimized H···O distances of 1.764 Å and 1.774 Å, with vibrational frequency redshifts of 15% (N–H···O) and 10% (O–H···O) relative to free N–H/O–H stretching frequencies. From VCD spectrum analysis, the functional groups participating in the two H-bonds exhibit non-robust modes, signifying the presence of the H-bonds in the dimer. NBO analysis shows stabilization energies of 15.5 kcal/mol (N–H···O) and 14.1 kcal/mol (O–H···O). All analyses showed that the zwitterionic structure of L-2-aminoadipic acid strengthens the N–H···O bond more than the O–H···O bond. The ECD spectra showed a broad band at 205 nm experimentally and 219 nm computationally, showing close agreement. Mole fraction variations in water reduced the intensity of the band without shifting its position. This observation has been attributed to the strong zwitterion dimer structure not amenable to dissociation into its constituent monomer species, thereby indicating that there is apparently no influence of N–H···O and O–H···O bonds on the electronic circular dichroism band structure.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- L. Pallavi, J. Tonannavar and J. Tonannavar, J. Mol. Liq., 352, 118746 (2022); https://doi.org/10.1016/j.molliq.2022.118746
- J. Bhovi, J. Tonannavar and J. Tonannavar, J. Mol. Struct., 1299, 137077 (2024); https://doi.org/10.1016/j.molstruc.2023.137077
- A. Jezierska, J.J. Panek, G.Z. Zukowska and A. Sporzyñski, J. Phys. Org. Chem., 23, 451 (2010); https://doi.org/10.1002/poc.1625
- Z. Dezhahang, M.R. Poopari and Y. Xu, J. Mol. Struct., 1024, 123 (2012); https://doi.org/10.1016/j.molstruc.2012.04.079
- J.N. Low, R.A. Howie, C.M. Scrimgeour and P.W. Watt, Acta Crystallogr. C, 44, 1762 (1988); https://doi.org/10.1107/S0108270188006997
- H.J. Lee, H.B. Jang, W.-H. Kim, K.J. Park, K.Y. Kim, S.I. Park and H.-J. Lee, Sci. Rep., 9, 13610 (2019); https://doi.org/10.1038/s41598-019-49578-z
- R.D. Sell, C.M. Strauch, W. Shen and V.M. Monnier, Biochem. J., 404, 269 (2007); https://doi.org/10.1042/BJ20061645
- I.V. Fedorova and L.P. Safonova, Struct. Chem., 32, 2061 (2021); https://doi.org/10.1007/s11224-021-01792-0
- R.P. Kavali, J. Tonannavar, J. Bhovi and J. Tonannavar, J. Mol. Struct., 1264, 133174 (2022); https://doi.org/10.1016/j.molstruc.2022.133174
- S.S. Malaganvi, J. Tonannavar (Yenagi) and J. Tonannavar, Heliyon, 5, (2019); https://doi.org/10.1016/j.heliyon.2019.e01586
- S. Yalagi, J. Tonannavar and J. Tonannavar, Heliyon, 5, e01933 (2019); https://doi.org/10.1016/j.heliyon.2019.e01933
- M.D. Prabhu, J. Tonannavar (Yenagi), V. Kamat and J. Tonannavar, J. Mol. Struct., 1218, 128495 (2020); https://doi.org/10.1016/j.molstruc.2020.128495
- S. Sarkhel and G.R. Desiraju, Proteins, 54, 247 (2004); https://doi.org/10.1002/prot.10567
- A. Jezierska, J. Mol. Model., 21, 47 (2015); https://doi.org/10.1007/s00894-015-2587-3
- M.D. Prabhu, J. Tonannavar and J. Tonannavar, J. Mol. Struct., 1246, 131218 (2021); https://doi.org/10.1016/j.molstruc.2021.131218
- P. Ramanna, J. Tonannavar and J. Tonannavar, J. Mol. Struct., 1241, 130613 (2021); https://doi.org/10.1016/j.molstruc.2021.130613
- S.S. Malaganvi, J. Tonannavar (Yenagi) and J. Tonannavar, J. Mol. Struct., 1181, 71 (2019); https://doi.org/10.1016/j.molstruc.2018.12.063
- L. Pallavi, J. Tonannavar and J. Tonannavar, J. Mol. Struct., 1211, 128085 (2020); https://doi.org/10.1016/j.molstruc.2020.128085
- M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, R.L. Martin, V. Bakken, J.A. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, Ö. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski and D.J. Fox, Gaussian 09, Revision D.01 Gaussian, Inc., Wallingford CT (2013).
- R. Dennington, T. Keith and J. Millam, GaussView 5.0, Semichem Inc. Shawnee Mission, KS (2009).
- V.A. Marenich, C.J. Cramer and D.G. Truhlar, J. Phys. Chem. B, 113, 6378 (2009); https://doi.org/10.1021/jp810292n
- J. Dziedzic, S.J. Fox, T. Fox, C.S. Tautermann and C.-K. Skylaris, Int. J. Quantum Chem., 113, 771 (2013); https://doi.org/10.1002/qua.24075
- N.H. Rhys, A.K. Soper and L. Dougan, J. Phys. Chem. B, 116, 13308 (2012); https://doi.org/10.1021/jp307442f
- M.J. Abraham, D. van der Spoel, E. Lindahl and B. Hess, GROMACS Development Team, GROMACS User Manual version (2019).
- H.J.C. Berendsen, D. van der Spoel and R. van Drunen, Comput. Phys. Commun., 91, 43 (1995); https://doi.org/10.1016/0010-4655(95)00042-E
- D. Van Der Spoel, E. Lindahl, B. Hess, G. Groenhof, A.E. Mark and H.J.C. Berendsen, J. Comput. Chem., 26, 1701 (2005); https://doi.org/10.1002/jcc.20291
- P. Szilard, M.J. Abraham, C. Kutzner, B. Hess and E. Lindahl, in eds.: S Markidis and E. Laure, Tackling Exascale Software Challenges in Molecular Dynamics Simulations with GROMACS; In: Solving Software Challenges for Exascale, EASC 2014, Lecture Notes in Computer Science, vol 8759. Springer, Cham. pp 3–27 (2015); https://doi.org/10.1007/978-3-319-15976-8_1
- S. Pronk, S. Páll, R. Schulz, P. Larsson, P. Bjelkmar, R. Apostolov, M.R. Shirts, J.C. Smith, P.M. Kasson, D. Van Der Spoel, B. Hess and E. Lindahl, Bioinformatics, 29, 845 (2013); https://doi.org/10.1093/bioinformatics/btt055
- V.R. Kumar, C. Verma and S. Umapathy, J. Chem. Phys., 144, 064302 (2016); https://doi.org/10.1063/1.4941058
- G. Bussi, D. Donadio and M. Parrinello, J. Chem. Phys., 126, 014101 (2007); https://doi.org/10.1063/1.2408420
- W.G. Hoover, A.J.C. Ladd and B. Moran, Phys. Rev. Lett., 48, 1818 (1982); https://doi.org/10.1103/PhysRevLett.48.1818
- U. Essmann, L. Perera, M.L. Berkowitz, T. Darden, H. Lee and L.G. Pedersen, J. Chem. Phys., 103, 8577 (1995); https://doi.org/10.1063/1.470117
- B. Hess, C. Kutzner, D. Van Der Spoel and E. Lindahl, J. Chem. Theory Comput., 4, 435 (2008); https://doi.org/10.1021/ct700301q
- W. Humphrey, A. Dalke and K. Schulten, J. Mol. Graph., 14, 22 (1996); https://doi.org/10.1016/0263-7855(96)00018-5
- N. Choudhary, S. Bee, A. Gupta and P. Tandon, Comput. Theor. Chem., 1016, 8 (2013); https://doi.org/10.1016/j.comptc.2013.04.008
- C.J. Cramer, Essential of Computational Chemistry Theories and Models, edn. 2, John Wiley & Sons (2004).
- R. Chelli, R. Righini and S. Califano, J. Phys. Chem. B, 109, 17006 (2005); https://doi.org/10.1021/jp051731u
- S. Alavi, K. Shin and J.A. Ripmeester, J. Chem. Eng. Data, 60, 389 (2015); https://doi.org/10.1021/je5006517
- P.N. Patrone and T.W. Rosch, J. Chem. Phys., 146, 094107 (2017); https://doi.org/10.1063/1.4977516
- U. Abdulkareem, T.R. Kartha and V. Madhurima, J. Mol. Model., 29, 151 (2023); https://doi.org/10.1007/s00894-023-05558-9
- G.R. Desiraju and T. Steiner, The Weak Hydrogen Hond, Structural Chemistry and Biology, Oxford University Press (2001).
- M. Arnittali, A.N. Rissanou and V. Harmandaris, Procedia Comput. Sci., 156, 69 (2019); https://doi.org/10.1016/j.procs.2019.08.181
- P. Liu, J. Lu, H. Yu, N. Ren, F.E. Lockwood and Q.J. Wang, J. Chem. Phys., 147, 084904 (2017); https://doi.org/10.1063/1.4986552
- N. Issaoui, H. Ghalla, S. Muthu, H.T. Flakus and B. Oujia, Spectrochim. Acta A Mol. Biomol. Spectrosc., 136, 1227 (2015); https://doi.org/10.1016/j.saa.2014.10.008
- J.B. Foresman and A. Frisch, Exploring Chemistry with Electronic Structure Methods, edn. 3, Gaussian, Inc.: Wallingford, CT (2015).
- S. Yalagi, J. Tonannavar and J. Yenagi, Spectrochim. Acta A Mol. Biomol. Spectrosc., 181, 109 (2017); https://doi.org/10.1016/j.saa.2017.03.041
- L. Pallavi, Ph.D. Thesis, Spectroscopic MD and DFT Characterization of Some Phenylalanines, Department of Physics, Karnatak University, Dharwad, India (2022).
- M.D. Prabhu, Ph.D. Thesis, Spectroscopic Study of Some Unnatural Amino Acids as Aided by DFT Modeling, Department of Physics, Karnatak University, Dharwad, India (2022).
- J.P. Merrick, D. Moran and L. Radom, J. Phys. Chem. A, 111, 11683 (2007); https://doi.org/10.1021/jp073974n
- W. Liptay, Angew. Chem. Int. Ed. Engl., 4, 724 (1965); https://doi.org/10.1002/anie.196507241
- L.J. Bellamy, The infra-red Spectra of Complex Molecules, Methuen and Co., London (1955).
- G. Socrates, Infrared Characteristic Group Frequencies, John Wiley & Sons: New York, London, Sydney, Toronto (1980).
- V.P. Nicu and E.J. Baerends, Phys. Chem. Chem. Phys., 11, 6107 (2009); https://doi.org/10.1039/b823558a
- G. Longhi, M. Tommasini, S. Abbate and P.L. Polavarapu, Chem. Phys. Lett., 639, 320 (2015); https://doi.org/10.1016/j.cplett.2015.09.043
- L.A. Nafie, Vibrational Optical Activity: Principles and Applications, Wiley (2011).
- S. Gobi, E. Vass, G. Magyarfalvi and G. Tarczay, Phys. Chem. Chem. Phys., 13, 13972 (2011); https://doi.org/10.1039/c1cp20797k
- E.D. Glendening, C.R. Landis and F. Weinhold, Wiley Interdiscip. Rev. Comput. Mol. Sci., 2, 1 (2012); https://doi.org/10.1002/wcms.51
- A.E. Reed, L.A. Curtiss and F. Weinhold, Chem. Rev., 88, 899 (1988); https://doi.org/10.1021/cr00088a005
- A.G. Petrovic, N. Berova and J.L. Alonso-Gómez, in eds.: M.-M. Cid and J. Bravo, Absolute Configuration and Conformational Analysis of Chiral Compounds via Experimental and Theoretical Prediction of Chiroptical Properties: ORD, ECD, and VCD, In: Structure Elucidation in Organic Chemistry: The Search for the Right Tools, Wiley-VCH Verlag GmbH & Co. KGaA, Chap. 5, pp. 65-104 (2015).
- Y. Geng, L. Li, C. Wu, Y. Chi, Z. Li, W. Xu and T. Sun, Molecules, 21, 875 (2016); https://doi.org/10.3390/molecules21070875
- R. Ding, J. Ying and Y. Zhao, R. Soc. Open Sci., 8, 201963 (2021); https://doi.org/10.1098/rsos.201963
- G. Pescitelli and T. Bruhn, Chirality, 28, 466 (2016); https://doi.org/10.1002/chir.22600
- D.A. Skoog, F.J. Holler and S.R. Crouch, Principles of Instrumental Analysis, Cengage Learning, edn. 7 (2016).
- F. Kaneko, K. Yagi-Watanabe, M. Tanaka and K. Nakagawa, J. Phys. Soc. Jpn., 78, 013001 (2009); https://doi.org/10.1143/JPSJ.78.013001
References
L. Pallavi, J. Tonannavar and J. Tonannavar, J. Mol. Liq., 352, 118746 (2022); https://doi.org/10.1016/j.molliq.2022.118746
J. Bhovi, J. Tonannavar and J. Tonannavar, J. Mol. Struct., 1299, 137077 (2024); https://doi.org/10.1016/j.molstruc.2023.137077
A. Jezierska, J.J. Panek, G.Z. Zukowska and A. Sporzyñski, J. Phys. Org. Chem., 23, 451 (2010); https://doi.org/10.1002/poc.1625
Z. Dezhahang, M.R. Poopari and Y. Xu, J. Mol. Struct., 1024, 123 (2012); https://doi.org/10.1016/j.molstruc.2012.04.079
J.N. Low, R.A. Howie, C.M. Scrimgeour and P.W. Watt, Acta Crystallogr. C, 44, 1762 (1988); https://doi.org/10.1107/S0108270188006997
H.J. Lee, H.B. Jang, W.-H. Kim, K.J. Park, K.Y. Kim, S.I. Park and H.-J. Lee, Sci. Rep., 9, 13610 (2019); https://doi.org/10.1038/s41598-019-49578-z
R.D. Sell, C.M. Strauch, W. Shen and V.M. Monnier, Biochem. J., 404, 269 (2007); https://doi.org/10.1042/BJ20061645
I.V. Fedorova and L.P. Safonova, Struct. Chem., 32, 2061 (2021); https://doi.org/10.1007/s11224-021-01792-0
R.P. Kavali, J. Tonannavar, J. Bhovi and J. Tonannavar, J. Mol. Struct., 1264, 133174 (2022); https://doi.org/10.1016/j.molstruc.2022.133174
S.S. Malaganvi, J. Tonannavar (Yenagi) and J. Tonannavar, Heliyon, 5, (2019); https://doi.org/10.1016/j.heliyon.2019.e01586
S. Yalagi, J. Tonannavar and J. Tonannavar, Heliyon, 5, e01933 (2019); https://doi.org/10.1016/j.heliyon.2019.e01933
M.D. Prabhu, J. Tonannavar (Yenagi), V. Kamat and J. Tonannavar, J. Mol. Struct., 1218, 128495 (2020); https://doi.org/10.1016/j.molstruc.2020.128495
S. Sarkhel and G.R. Desiraju, Proteins, 54, 247 (2004); https://doi.org/10.1002/prot.10567
A. Jezierska, J. Mol. Model., 21, 47 (2015); https://doi.org/10.1007/s00894-015-2587-3
M.D. Prabhu, J. Tonannavar and J. Tonannavar, J. Mol. Struct., 1246, 131218 (2021); https://doi.org/10.1016/j.molstruc.2021.131218
P. Ramanna, J. Tonannavar and J. Tonannavar, J. Mol. Struct., 1241, 130613 (2021); https://doi.org/10.1016/j.molstruc.2021.130613
S.S. Malaganvi, J. Tonannavar (Yenagi) and J. Tonannavar, J. Mol. Struct., 1181, 71 (2019); https://doi.org/10.1016/j.molstruc.2018.12.063
L. Pallavi, J. Tonannavar and J. Tonannavar, J. Mol. Struct., 1211, 128085 (2020); https://doi.org/10.1016/j.molstruc.2020.128085
M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, R.L. Martin, V. Bakken, J.A. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, Ö. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski and D.J. Fox, Gaussian 09, Revision D.01 Gaussian, Inc., Wallingford CT (2013).
R. Dennington, T. Keith and J. Millam, GaussView 5.0, Semichem Inc. Shawnee Mission, KS (2009).
V.A. Marenich, C.J. Cramer and D.G. Truhlar, J. Phys. Chem. B, 113, 6378 (2009); https://doi.org/10.1021/jp810292n
J. Dziedzic, S.J. Fox, T. Fox, C.S. Tautermann and C.-K. Skylaris, Int. J. Quantum Chem., 113, 771 (2013); https://doi.org/10.1002/qua.24075
N.H. Rhys, A.K. Soper and L. Dougan, J. Phys. Chem. B, 116, 13308 (2012); https://doi.org/10.1021/jp307442f
M.J. Abraham, D. van der Spoel, E. Lindahl and B. Hess, GROMACS Development Team, GROMACS User Manual version (2019).
H.J.C. Berendsen, D. van der Spoel and R. van Drunen, Comput. Phys. Commun., 91, 43 (1995); https://doi.org/10.1016/0010-4655(95)00042-E
D. Van Der Spoel, E. Lindahl, B. Hess, G. Groenhof, A.E. Mark and H.J.C. Berendsen, J. Comput. Chem., 26, 1701 (2005); https://doi.org/10.1002/jcc.20291
P. Szilard, M.J. Abraham, C. Kutzner, B. Hess and E. Lindahl, in eds.: S Markidis and E. Laure, Tackling Exascale Software Challenges in Molecular Dynamics Simulations with GROMACS; In: Solving Software Challenges for Exascale, EASC 2014, Lecture Notes in Computer Science, vol 8759. Springer, Cham. pp 3–27 (2015); https://doi.org/10.1007/978-3-319-15976-8_1
S. Pronk, S. Páll, R. Schulz, P. Larsson, P. Bjelkmar, R. Apostolov, M.R. Shirts, J.C. Smith, P.M. Kasson, D. Van Der Spoel, B. Hess and E. Lindahl, Bioinformatics, 29, 845 (2013); https://doi.org/10.1093/bioinformatics/btt055
V.R. Kumar, C. Verma and S. Umapathy, J. Chem. Phys., 144, 064302 (2016); https://doi.org/10.1063/1.4941058
G. Bussi, D. Donadio and M. Parrinello, J. Chem. Phys., 126, 014101 (2007); https://doi.org/10.1063/1.2408420
W.G. Hoover, A.J.C. Ladd and B. Moran, Phys. Rev. Lett., 48, 1818 (1982); https://doi.org/10.1103/PhysRevLett.48.1818
U. Essmann, L. Perera, M.L. Berkowitz, T. Darden, H. Lee and L.G. Pedersen, J. Chem. Phys., 103, 8577 (1995); https://doi.org/10.1063/1.470117
B. Hess, C. Kutzner, D. Van Der Spoel and E. Lindahl, J. Chem. Theory Comput., 4, 435 (2008); https://doi.org/10.1021/ct700301q
W. Humphrey, A. Dalke and K. Schulten, J. Mol. Graph., 14, 22 (1996); https://doi.org/10.1016/0263-7855(96)00018-5
N. Choudhary, S. Bee, A. Gupta and P. Tandon, Comput. Theor. Chem., 1016, 8 (2013); https://doi.org/10.1016/j.comptc.2013.04.008
C.J. Cramer, Essential of Computational Chemistry Theories and Models, edn. 2, John Wiley & Sons (2004).
R. Chelli, R. Righini and S. Califano, J. Phys. Chem. B, 109, 17006 (2005); https://doi.org/10.1021/jp051731u
S. Alavi, K. Shin and J.A. Ripmeester, J. Chem. Eng. Data, 60, 389 (2015); https://doi.org/10.1021/je5006517
P.N. Patrone and T.W. Rosch, J. Chem. Phys., 146, 094107 (2017); https://doi.org/10.1063/1.4977516
U. Abdulkareem, T.R. Kartha and V. Madhurima, J. Mol. Model., 29, 151 (2023); https://doi.org/10.1007/s00894-023-05558-9
G.R. Desiraju and T. Steiner, The Weak Hydrogen Hond, Structural Chemistry and Biology, Oxford University Press (2001).
M. Arnittali, A.N. Rissanou and V. Harmandaris, Procedia Comput. Sci., 156, 69 (2019); https://doi.org/10.1016/j.procs.2019.08.181
P. Liu, J. Lu, H. Yu, N. Ren, F.E. Lockwood and Q.J. Wang, J. Chem. Phys., 147, 084904 (2017); https://doi.org/10.1063/1.4986552
N. Issaoui, H. Ghalla, S. Muthu, H.T. Flakus and B. Oujia, Spectrochim. Acta A Mol. Biomol. Spectrosc., 136, 1227 (2015); https://doi.org/10.1016/j.saa.2014.10.008
J.B. Foresman and A. Frisch, Exploring Chemistry with Electronic Structure Methods, edn. 3, Gaussian, Inc.: Wallingford, CT (2015).
S. Yalagi, J. Tonannavar and J. Yenagi, Spectrochim. Acta A Mol. Biomol. Spectrosc., 181, 109 (2017); https://doi.org/10.1016/j.saa.2017.03.041
L. Pallavi, Ph.D. Thesis, Spectroscopic MD and DFT Characterization of Some Phenylalanines, Department of Physics, Karnatak University, Dharwad, India (2022).
M.D. Prabhu, Ph.D. Thesis, Spectroscopic Study of Some Unnatural Amino Acids as Aided by DFT Modeling, Department of Physics, Karnatak University, Dharwad, India (2022).
J.P. Merrick, D. Moran and L. Radom, J. Phys. Chem. A, 111, 11683 (2007); https://doi.org/10.1021/jp073974n
W. Liptay, Angew. Chem. Int. Ed. Engl., 4, 724 (1965); https://doi.org/10.1002/anie.196507241
L.J. Bellamy, The infra-red Spectra of Complex Molecules, Methuen and Co., London (1955).
G. Socrates, Infrared Characteristic Group Frequencies, John Wiley & Sons: New York, London, Sydney, Toronto (1980).
V.P. Nicu and E.J. Baerends, Phys. Chem. Chem. Phys., 11, 6107 (2009); https://doi.org/10.1039/b823558a
G. Longhi, M. Tommasini, S. Abbate and P.L. Polavarapu, Chem. Phys. Lett., 639, 320 (2015); https://doi.org/10.1016/j.cplett.2015.09.043
L.A. Nafie, Vibrational Optical Activity: Principles and Applications, Wiley (2011).
S. Gobi, E. Vass, G. Magyarfalvi and G. Tarczay, Phys. Chem. Chem. Phys., 13, 13972 (2011); https://doi.org/10.1039/c1cp20797k
E.D. Glendening, C.R. Landis and F. Weinhold, Wiley Interdiscip. Rev. Comput. Mol. Sci., 2, 1 (2012); https://doi.org/10.1002/wcms.51
A.E. Reed, L.A. Curtiss and F. Weinhold, Chem. Rev., 88, 899 (1988); https://doi.org/10.1021/cr00088a005
A.G. Petrovic, N. Berova and J.L. Alonso-Gómez, in eds.: M.-M. Cid and J. Bravo, Absolute Configuration and Conformational Analysis of Chiral Compounds via Experimental and Theoretical Prediction of Chiroptical Properties: ORD, ECD, and VCD, In: Structure Elucidation in Organic Chemistry: The Search for the Right Tools, Wiley-VCH Verlag GmbH & Co. KGaA, Chap. 5, pp. 65-104 (2015).
Y. Geng, L. Li, C. Wu, Y. Chi, Z. Li, W. Xu and T. Sun, Molecules, 21, 875 (2016); https://doi.org/10.3390/molecules21070875
R. Ding, J. Ying and Y. Zhao, R. Soc. Open Sci., 8, 201963 (2021); https://doi.org/10.1098/rsos.201963
G. Pescitelli and T. Bruhn, Chirality, 28, 466 (2016); https://doi.org/10.1002/chir.22600
D.A. Skoog, F.J. Holler and S.R. Crouch, Principles of Instrumental Analysis, Cengage Learning, edn. 7 (2016).
F. Kaneko, K. Yagi-Watanabe, M. Tanaka and K. Nakagawa, J. Phys. Soc. Jpn., 78, 013001 (2009); https://doi.org/10.1143/JPSJ.78.013001