Copyright (c) 2025 Rajitha Balavanthapu, Girija Sastry Vedula

This work is licensed under a Creative Commons Attribution 4.0 International License.
Novel 5-((Phenylimino)methyl)-1,2,4-triazol-3-one Derivatives: Synthesis, Anticancer Potential and Molecular Docking Insights
Corresponding Author(s) : Rajitha Balavanthapu
Asian Journal of Chemistry,
Vol. 37 No. 6 (2025): Vol 37 Issue 6, 2025
Abstract
In this study, a series of substituted 5-((phenylimino)methyl)-2,4-dihydro-3H-1,2,4-triazol-3-one derivatives (5a-o) were synthesized and evaluated for their anticancer activity against various human cancer cell lines, including A549 (non-small cell lung cancer), HCT-116 (colorectal cancer) and PANC-1 (pancreatic cancer). The compounds were synthesized through a multi-steps process involving the preparation of ethyl β-N-Boc-oxalamidrazone, followed by cyclization to form ethyl 5-oxo-4,5-dihydro-1H-1,2,4-triazole-3-carboxylate, reduction to yield 5-oxo-4,5-dihydro-1H-1,2,4-triazole-3-carbaldehyde and subsequent condensation with various substituted anilines to obtain the final derivatives. Structures of the compounds were confirmed by 1H NMR, 13C NMR and high-resolution mass (HRMS) spectral methods. Molecular docking studies targeting epidermal growth factor receptor (EGFR) and cyclin-dependent kinase 4 (CDK4) revealed that certain derivatives, particularly those with electron-withdrawing groups like -NO2, -OH and -CF3, exhibited strong binding affinities, suggesting potential as inhibitors of these targets. In vitro cytotoxicity assays showed significant antiproliferative effects, with compound 5h (4-CF3) exhibiting the highest potency against A549 (IC50: 7.80 ± 3.06 µM) and PANC-1 (IC50: 8.75 ± 1.86 µM). Compound 5j (3,4-(OCH3)2) demonstrated notable activity against A549 (IC50: 5.96 ± 1.02 µM). Structure activity relationship analysis indicated that electron-donating groups generally enhanced activity, while electron-withdrawing groups had varying effects based on their position. These findings highlight the potential of these derivatives as lead compounds for anticancer drug development. Further optimization and in vivo studies are needed to fully explore their therapeutic potential.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- H. Mithoowani and M. Febbraro, Curr. Oncol., 29, 1828 (2022); https://doi.org/10.3390/curroncol29030150
- U. Anand, A. Dey, A.K.S. Chandel, R. Sanyal, A. Mishra, D.K. Pandey, V. De Falco, A. Upadhyay, R. Kandimalla, A. Chaudhary, J.K. Dhanjal, S. Dewanjee, J. Vallamkondu and J.M. Pérez De La Lastra, Genes Dis., 10, 1367 (2023); https://doi.org/10.1016/j.gendis.2022.02.007
- W.M.C. Van Den Boogaard, D.S.J. Komninos and W.P. Vermeij, Cancers, 14, 627 (2022); https://doi.org/10.3390/cancers14030627
- R. Kaur, A.R. Dwivedi, B. Kumar and V. Kumar, Anticancer. Agents Med. Chem., 16, 465 (2016); https://doi.org/10.2174/1871520615666150819121106
- E. Bonandi, M.S. Christodoulou, G. Fumagalli, D. Perdicchia, G. Rastelli and D. Passarella, Drug Discov. Today, 22, 1572 (2017); https://doi.org/10.1016/j.drudis.2017.05.014
- J. Murray, O.E. Young, L. Renshaw, S. White, L. Williams, D.B. Evans, J.M. Thomas, M. Dowsett and J.M. Dixon, Breast Cancer Res. Treat., 114, 495 (2009); https://doi.org/10.1007/s10549-008-0027-0
- S.A. Shahzad, M. Yar, Z.A. Khan, L. Shahzadi, S.A.R. Naqvi, A. Mahmood, S. Ullah, A.J. Shaikh, T.A. Sherazi, A.T. Bale, J. Kuku³owicz and M. Bajda, Bioorg. Chem., 85, 209 (2019); https://doi.org/10.1016/j.bioorg.2019.01.005
- H. Bera, B.J. Tan, L. Sun, A.V. Dolzhenko, W.-K. Chui and G.N.C. Chiu, Eur. J. Med. Chem., 67, 325 (2013); https://doi.org/10.1016/j.ejmech.2013.06.051
- Z. Song, Y. Liu, Z. Dai, W. Liu, K. Zhao, T. Zhang, Y. Hu, X. Zhang and Y. Dai, Bioorg. Med. Chem., 24, 4723 (2016); https://doi.org/10.1016/j.bmc.2016.08.014
- R.Z. Batran, D.H. Dawood, S.A. El-Seginy, M.M. Ali, T.J. Maher, K.S. Gugnani and A.N. Rondon-Ortiz, Arch. Pharm., 350, 1700064 (2017); https://doi.org/10.1002/ardp.201700064
- M. Qin, S. Yan, L. Wang, H. Zhang, Y. Zhao, S. Wu, D. Wu and P. Gong, Eur. J. Med. Chem., 115, 1 (2016); https://doi.org/10.1016/j.ejmech.2016.02.071
- J. Liu, M. Nie, Y. Wang, J. Hu, F. Zhang, Y. Gao, Y. Liu and P. Gong, Eur. J. Med. Chem., 123, 431 (2016); https://doi.org/10.1016/j.ejmech.2016.07.059
- M.I. Han, H. Bekçi, A.I. Uba, Y. Yildirim, E. Karasulu, A. Cumaoglu, H.Y. Karasulu, K. Yelekçi, Ö. Yilmaz and S.G. Küçükgüzel, Arch. Pharm. (Weinheim), 352, 1800365 (2019); https://doi.org/10.1002/ardp.201800365
- I.H. Eissa, A.M. Metwaly, A. Belal, A.B.M. Mehany, R.R. Ayyad, K. El-Adl, H.A. Mahdy, M.S. Taghour, K.M.A. El-Gamal, M.E. El-Sawah, S.A. Elmetwally, M.A. Elhendawy, M.M. Radwan and M.A. ElSohly, Arch. Pharm., 352, 1900123 (2019); https://doi.org/10.1002/ardp.201900123
- M.K. Ibrahim, M.S. Taghour, A.M. Metwaly, A. Belal, A.B.M. Mehany, M.A. Elhendawy, M.M. Radwan, A.M. Yassin, N.M. El-Deeb, E.E. Hafez, M.A. ElSohly and I.H. Eissa, Eur. J. Med. Chem., 155, 117 (2018); https://doi.org/10.1016/j.ejmech.2018.06.004
- G. Sáez-Calvo, A. Sharma, F.D.A. Balaguer, I. Barasoain, J. Rodríguez-Salarichs, N. Olieric, H. Muñoz-Hernández, S. Wendeborn, M.A. Peñalva, M.Á. Berbís, R. Matesanz, Á. Canales, J.M. Jímenez-Barbero, A.E. Prota, J.M. Andreu, C. Lamberth, M.O. Steinmetz and J.F. Díaz, Cell Chem. Biol., 24, 737 (2017); https://doi.org/10.1016/j.chembiol.2017.05.016
- M. Alswah, A. Bayoumi, K. Elgamal, A. Elmorsy, S. Ihmaid and H. Ahmed, Molecules, 23, 48 (2017); https://doi.org/10.3390/molecules23010048
- M. Szumilak, A. Wiktorowska-Owczarek and A. Stanczak, Molecules, 26, 2601 (2021); https://doi.org/10.3390/molecules26092601
- N. Li, C. Chen, H. Zhu, Z. Shi, J. Sun and L. Chen, Bioorg. Chem., 111, 104867 (2021); https://doi.org/10.1016/j.bioorg.2021.104867
- L.E. Grebenkina, A.V. Matveev and M.V. Chudinov, Chem. Heterocycl. Compd., 56, 1173 (2020); https://doi.org/10.1007/s10593-020-02794-2
- D. Webb and T.F. Jamison, Org. Lett., 14, 568 (2012); https://doi.org/10.1021/ol2031872
- S. Morales, F.G. Guijarro, J.L. García Ruano and M.B. Cid, J. Am. Chem. Soc., 136, 1082 (2014); https://doi.org/10.1021/ja4111418
- B.J. Bender, S. Gahbauer, A. Luttens, J. Lyu, C.M. Webb, R.M. Stein, E.A. Fink, T.E. Balius, J. Carlsson, J.J. Irwin and B.K. Shoichet, Nat. Protoc., 16, 4799 (2021); https://doi.org/10.1038/s41596-021-00597-z
- T.L. Riss, R.A. Moravec, A.L. Niles, S. Duellman, H.A. Benink, T.J. Worzella and L. Minor, in eds.: S. Markossian, A. Grossman, H. Baskir, M. Arkin, D. Auld, C. Austin, J. Baell, K. Brimacombe, T.D.Y. Chung, N.P. Coussens, J.L. Dahlin, V. Devanarayan, T.L. Foley, M. Glicksman, K. Gorshkov, S. Grotegut, M.D. Hall, S. Hoare, J. Inglese, P.W. Iversen, M. Lal-Nag, Z. Li, J.R. Manro, J. McGee, A. Norvil, M. Pearson, T. Riss, P. Saradjian, G.S. Sittampalam, M.A. Tarselli, O.J. Trask Jr., J.R. Weidner, M.J. Wildey, K. Wilson, M. Xia and X. Xu, Cell Viability Assays, In: Assay Guidance Manual, Eli Lilly & Company and the National Center for Advancing Translational Sciences, Bethesda, MD (2004).
References
H. Mithoowani and M. Febbraro, Curr. Oncol., 29, 1828 (2022); https://doi.org/10.3390/curroncol29030150
U. Anand, A. Dey, A.K.S. Chandel, R. Sanyal, A. Mishra, D.K. Pandey, V. De Falco, A. Upadhyay, R. Kandimalla, A. Chaudhary, J.K. Dhanjal, S. Dewanjee, J. Vallamkondu and J.M. Pérez De La Lastra, Genes Dis., 10, 1367 (2023); https://doi.org/10.1016/j.gendis.2022.02.007
W.M.C. Van Den Boogaard, D.S.J. Komninos and W.P. Vermeij, Cancers, 14, 627 (2022); https://doi.org/10.3390/cancers14030627
R. Kaur, A.R. Dwivedi, B. Kumar and V. Kumar, Anticancer. Agents Med. Chem., 16, 465 (2016); https://doi.org/10.2174/1871520615666150819121106
E. Bonandi, M.S. Christodoulou, G. Fumagalli, D. Perdicchia, G. Rastelli and D. Passarella, Drug Discov. Today, 22, 1572 (2017); https://doi.org/10.1016/j.drudis.2017.05.014
J. Murray, O.E. Young, L. Renshaw, S. White, L. Williams, D.B. Evans, J.M. Thomas, M. Dowsett and J.M. Dixon, Breast Cancer Res. Treat., 114, 495 (2009); https://doi.org/10.1007/s10549-008-0027-0
S.A. Shahzad, M. Yar, Z.A. Khan, L. Shahzadi, S.A.R. Naqvi, A. Mahmood, S. Ullah, A.J. Shaikh, T.A. Sherazi, A.T. Bale, J. Kuku³owicz and M. Bajda, Bioorg. Chem., 85, 209 (2019); https://doi.org/10.1016/j.bioorg.2019.01.005
H. Bera, B.J. Tan, L. Sun, A.V. Dolzhenko, W.-K. Chui and G.N.C. Chiu, Eur. J. Med. Chem., 67, 325 (2013); https://doi.org/10.1016/j.ejmech.2013.06.051
Z. Song, Y. Liu, Z. Dai, W. Liu, K. Zhao, T. Zhang, Y. Hu, X. Zhang and Y. Dai, Bioorg. Med. Chem., 24, 4723 (2016); https://doi.org/10.1016/j.bmc.2016.08.014
R.Z. Batran, D.H. Dawood, S.A. El-Seginy, M.M. Ali, T.J. Maher, K.S. Gugnani and A.N. Rondon-Ortiz, Arch. Pharm., 350, 1700064 (2017); https://doi.org/10.1002/ardp.201700064
M. Qin, S. Yan, L. Wang, H. Zhang, Y. Zhao, S. Wu, D. Wu and P. Gong, Eur. J. Med. Chem., 115, 1 (2016); https://doi.org/10.1016/j.ejmech.2016.02.071
J. Liu, M. Nie, Y. Wang, J. Hu, F. Zhang, Y. Gao, Y. Liu and P. Gong, Eur. J. Med. Chem., 123, 431 (2016); https://doi.org/10.1016/j.ejmech.2016.07.059
M.I. Han, H. Bekçi, A.I. Uba, Y. Yildirim, E. Karasulu, A. Cumaoglu, H.Y. Karasulu, K. Yelekçi, Ö. Yilmaz and S.G. Küçükgüzel, Arch. Pharm. (Weinheim), 352, 1800365 (2019); https://doi.org/10.1002/ardp.201800365
I.H. Eissa, A.M. Metwaly, A. Belal, A.B.M. Mehany, R.R. Ayyad, K. El-Adl, H.A. Mahdy, M.S. Taghour, K.M.A. El-Gamal, M.E. El-Sawah, S.A. Elmetwally, M.A. Elhendawy, M.M. Radwan and M.A. ElSohly, Arch. Pharm., 352, 1900123 (2019); https://doi.org/10.1002/ardp.201900123
M.K. Ibrahim, M.S. Taghour, A.M. Metwaly, A. Belal, A.B.M. Mehany, M.A. Elhendawy, M.M. Radwan, A.M. Yassin, N.M. El-Deeb, E.E. Hafez, M.A. ElSohly and I.H. Eissa, Eur. J. Med. Chem., 155, 117 (2018); https://doi.org/10.1016/j.ejmech.2018.06.004
G. Sáez-Calvo, A. Sharma, F.D.A. Balaguer, I. Barasoain, J. Rodríguez-Salarichs, N. Olieric, H. Muñoz-Hernández, S. Wendeborn, M.A. Peñalva, M.Á. Berbís, R. Matesanz, Á. Canales, J.M. Jímenez-Barbero, A.E. Prota, J.M. Andreu, C. Lamberth, M.O. Steinmetz and J.F. Díaz, Cell Chem. Biol., 24, 737 (2017); https://doi.org/10.1016/j.chembiol.2017.05.016
M. Alswah, A. Bayoumi, K. Elgamal, A. Elmorsy, S. Ihmaid and H. Ahmed, Molecules, 23, 48 (2017); https://doi.org/10.3390/molecules23010048
M. Szumilak, A. Wiktorowska-Owczarek and A. Stanczak, Molecules, 26, 2601 (2021); https://doi.org/10.3390/molecules26092601
N. Li, C. Chen, H. Zhu, Z. Shi, J. Sun and L. Chen, Bioorg. Chem., 111, 104867 (2021); https://doi.org/10.1016/j.bioorg.2021.104867
L.E. Grebenkina, A.V. Matveev and M.V. Chudinov, Chem. Heterocycl. Compd., 56, 1173 (2020); https://doi.org/10.1007/s10593-020-02794-2
D. Webb and T.F. Jamison, Org. Lett., 14, 568 (2012); https://doi.org/10.1021/ol2031872
S. Morales, F.G. Guijarro, J.L. García Ruano and M.B. Cid, J. Am. Chem. Soc., 136, 1082 (2014); https://doi.org/10.1021/ja4111418
B.J. Bender, S. Gahbauer, A. Luttens, J. Lyu, C.M. Webb, R.M. Stein, E.A. Fink, T.E. Balius, J. Carlsson, J.J. Irwin and B.K. Shoichet, Nat. Protoc., 16, 4799 (2021); https://doi.org/10.1038/s41596-021-00597-z
T.L. Riss, R.A. Moravec, A.L. Niles, S. Duellman, H.A. Benink, T.J. Worzella and L. Minor, in eds.: S. Markossian, A. Grossman, H. Baskir, M. Arkin, D. Auld, C. Austin, J. Baell, K. Brimacombe, T.D.Y. Chung, N.P. Coussens, J.L. Dahlin, V. Devanarayan, T.L. Foley, M. Glicksman, K. Gorshkov, S. Grotegut, M.D. Hall, S. Hoare, J. Inglese, P.W. Iversen, M. Lal-Nag, Z. Li, J.R. Manro, J. McGee, A. Norvil, M. Pearson, T. Riss, P. Saradjian, G.S. Sittampalam, M.A. Tarselli, O.J. Trask Jr., J.R. Weidner, M.J. Wildey, K. Wilson, M. Xia and X. Xu, Cell Viability Assays, In: Assay Guidance Manual, Eli Lilly & Company and the National Center for Advancing Translational Sciences, Bethesda, MD (2004).