Copyright (c) 2025 Banin Shakeri Jooybari

This work is licensed under a Creative Commons Attribution 4.0 International License.
Essential and Non-Essential Elements Analysis in Black Teas and their Extraction Efficiency using Neutron Activation Analysis
Corresponding Author(s) : Banin Shakeri Jooybari
Asian Journal of Chemistry,
Vol. 37 No. 6 (2025): Vol 37 Issue 6, 2025
Abstract
This study aims to evaluate the concentrations of essential (Na, K, Mg, Fe, Zn, Co, Mn, Cr) and non-essential (Al, Ba, Rb, Br, La, Sc, Sm) elements in black tea leaves and their infusions. Additionally, it investigates the extraction efficiency of these elements to assess their dietary contributions, particularly for populations of Iran with high tea consumption. Neutron activation analysis (NAA) was employed to determine elemental concentrations in five popular black teas commonly consumed in Iran. The analysis quantified the transfer of elements from dry tea leaves to tea infusions, calculating extraction efficiencies to assess their potential dietary relevance. Elements with high extraction efficiency (>55%) included Rb (79.3%), K (78.7%), Br (65.9%) and Cr (61.3%). Moderate extraction efficiencies (20-55%) were observed for Co (32.4%) and La (20.6%), while poor extraction efficiencies (<20%) were noted for Mg, Ba, Zn, Sm, Na, Al and Sc. Black tea was identified as a dietary source of trace elements such as Cr, Rb and Co, highlighting its potential nutritional value for high-consumption populations. This study provides novel insights into the elemental composition and extraction efficiency of black tea, emphasizing its role as a dietary source of essential and trace elements. The findings have significant implications for understanding the nutritional contributions of tea in regions with high consumption, particularly in Iran, where tea is a staple beverage.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- F.M. Shen and H.W. Chen, Bull. Environ. Contam. Toxicol., 80, 300 (2008); https://doi.org/10.1007/s00128-008-9367-z
- T. Karak and R.M. Bhagat, Food Res. Int., 43, 2234 (2010); https://doi.org/10.1016/j.foodres.2010.08.010
- M. Mirlohi, E. Rezaee, A. Hassanzadeh and A. Fallah, J. Educ. Health Promot., 5, 13 (2016); https://doi.org/10.4103/2277-9531.184568
- M. Salahinejad and F. Aflaki, Biol. Trace Elem. Res., 134, 109 (2010); https://doi.org/10.1007/s12011-009-8449-z
- A. Kabata-Pendias and H. Pendias, Trace elements in Soils and Plants. CRC Press: Boca-Raton (1984).
- M. Dambiec, L. Polechoñska and A. Klink, J. Food Compos. Anal., 31, 62 (2013); https://doi.org/10.1016/j.jfca.2013.03.006
- M.A. Herrador and A.G. González, Talanta, 53, 1249 (2001); https://doi.org/10.1016/S0039-9140(00)00619-6
- C. Mitra, D. Das, A.S. Das and V.R. Preedy, Black Tea (Camellia sinensis) and Bone Loss Protection, In: Tea in Health and Disease Prevention Elsevier Science Inc., pp. 603-612 (2013); https://doi.org/10.1016/B978-0-12-384937-3.00050-1
- J. Brzezicha-Cirocka, M. Grembecka, T. Ciesielski, T.P. Flaten and P. Szefer, Biol. Trace Elem. Res., 176, 429 (2017); https://doi.org/10.1007/s12011-016-0849-2
- Q.V. Vuong, Crit. Rev. Food Sci. Nutr., 54, 523 (2014); https://doi.org/10.1080/10408398.2011.594184
- S. Pastoriza, M. Mesías, C. Cabrera and J.A. Rufián-Henares, Food Funct., 8, 2650 (2017); https://doi.org/10.1039/C7FO00611J
- B. Garbowska, J. Wieczorek, B. Garbowska, Z. Wieczorek and M. Polak-Sliwinska, J. Elem., 23, (2017); https://doi.org/10.5601/jelem.2017.22.2.1306
- ATSDR, Toxicological profile. U.S. Department of Health and Human Services, Agency for Toxic Substances and Disease Registry (2005).
- M. Ibourki, O. Hallouch, K. Devkota, D. Guillaume, A. Hirich and S. Gharby, J. Food Compos. Anal., 120, 105330 (2023); https://doi.org/10.1016/j.jfca.2023.105330
- H. Matsuura, A. Hokura, F. Katsuki, A. Itoh and H. Haraguchi, Anal. Sci., 17, 391 (2001); https://doi.org/10.2116/analsci.17.391
- M.K. Mahani and M.G. Maragheh, Food Anal. Methods, 4, 73 (2011); https://doi.org/10.1007/s12161-009-9120-1
- N. Aksuner, E. Henden, Z. Aker, E. Engin and S. Satik, Food Addit. Contam. Part B Surveill., 5, 126 (2012); https://doi.org/10.1080/19393210.2012.675592
- T. Vasilopoulou, Neutron Activation Analysis (NAA), In: The Encyclo-pedia of Archaeological Sciences, Wiley, pp. 1-5 (2018); https://doi.org/10.1002/9781119188230.saseas0404
- L. Hamidatou, H. Slamene, T. Akhal and B. Zourane, in eds.: F. Kharfi, Concepts, Instrumentation and Techniques of Neutron Activation Analysis, In: Imaging and Radioanalytical Techniques in Interdisciplinary Research-Fundamentals and Cutting Edge Applications, InTechOPen, pp. 141-178 (2013).
- ORTEC, GammaVision-32: Gamma-Ray Spectrum Analysis and MCA Emulator. Software User’s Manual (1999).
- W. Liyu, IAE/SPAN V5.1 Multipurpose Gamma-Ray Spectrum Analysis Software, China Institute of Atomic Energy, Beijing (1995).
- E. Chajduk, Chem. Anal., 54, 841 (2009).
- J. Malik, J. Szakova, O. Drabek, J. Balik and L. Kokoska, Food Chem., 111, 520 (2008); https://doi.org/10.1016/j.foodchem.2008.04.009
- R. Matsuda, K. Sasaki, H. Sakai, Y. Aoyagi, M. Saeki, Y. Hasegawa, T. Hidaka, K. Ishii, E. Mochizuki, T. Yamamoto, M. Miyabe, Y. Tamura, S. Hori, K. Ikebe, M. Tsuji, M. Kojima, K. Saeki, S. Matsuoka, C. Nishioka, H. Fujita, H. Shiroma, Z. Oshiro and M. Toyoda, Shokuhin Eiseigaku Zasshi, 42, 18 (2001); https://doi.org/10.3358/shokueishi.42.18
- https://ods.od.nih.gov
- K. Shiraishi, S. Ko, Y. Muramatsu, P.V. Zamostyan and N.Y. Tsigankov, Health Phys., 96, 5 (2009); https://doi.org/10.1097/01.HP.0000324209.49716.4c
- D. González-Weller, C. Rubio, Á.J. Gutiérrez, G.L. González, J.M.C. Mesa, C.R. Gironés, A.B. Ojeda and A. Hardisson, Food Chem. Toxicol., 62, 856 (2013); https://doi.org/10.1016/j.fct.2013.10.026
- https://myhealth.ucsd.edu/Library/NutritionalSupplements/Minerals/19,Cobalt
- https://www.fda.gov/food/nutrition-facts-label/daily-value-nutrition-and-supplement-facts-labels
- P. Hendrix, R. Van Cauwenbergh, H. Robberecht and H. Deelstra, Z. Lebensm. Unters Forsch., 204, 165 (1997); https://doi.org/10.1007/s002170050055
- EFSA Panel on Dietetic Products, EFSA J., 12, 3844 (2014); https://doi.org/10.2903/j.efsa.2014.3844
- M. Oria, M. Harrison and V.A. Stallings, Dietary Reference Intakes for Sodium and Potassium, The National Academies Collection: Reports funded by National Institutes of Health, Washington (DC): National Academies Press (USA) (2019).
- R.P. Wedeen, B. Berlinger and J. Aaseth, Lanthanum, In: Handbook on the Toxicology of Metals, Academic Press, pp. 903-909 (2015).
- https://www.lenntech.com.pt/periodico/scandium.htm
- Codex Alimentarius Commission, Working Document for Information and use in Discussions Related to Contaminants and Toxins in the GSCTFF. CODEX: Rome, Italy (2011).
References
F.M. Shen and H.W. Chen, Bull. Environ. Contam. Toxicol., 80, 300 (2008); https://doi.org/10.1007/s00128-008-9367-z
T. Karak and R.M. Bhagat, Food Res. Int., 43, 2234 (2010); https://doi.org/10.1016/j.foodres.2010.08.010
M. Mirlohi, E. Rezaee, A. Hassanzadeh and A. Fallah, J. Educ. Health Promot., 5, 13 (2016); https://doi.org/10.4103/2277-9531.184568
M. Salahinejad and F. Aflaki, Biol. Trace Elem. Res., 134, 109 (2010); https://doi.org/10.1007/s12011-009-8449-z
A. Kabata-Pendias and H. Pendias, Trace elements in Soils and Plants. CRC Press: Boca-Raton (1984).
M. Dambiec, L. Polechoñska and A. Klink, J. Food Compos. Anal., 31, 62 (2013); https://doi.org/10.1016/j.jfca.2013.03.006
M.A. Herrador and A.G. González, Talanta, 53, 1249 (2001); https://doi.org/10.1016/S0039-9140(00)00619-6
C. Mitra, D. Das, A.S. Das and V.R. Preedy, Black Tea (Camellia sinensis) and Bone Loss Protection, In: Tea in Health and Disease Prevention Elsevier Science Inc., pp. 603-612 (2013); https://doi.org/10.1016/B978-0-12-384937-3.00050-1
J. Brzezicha-Cirocka, M. Grembecka, T. Ciesielski, T.P. Flaten and P. Szefer, Biol. Trace Elem. Res., 176, 429 (2017); https://doi.org/10.1007/s12011-016-0849-2
Q.V. Vuong, Crit. Rev. Food Sci. Nutr., 54, 523 (2014); https://doi.org/10.1080/10408398.2011.594184
S. Pastoriza, M. Mesías, C. Cabrera and J.A. Rufián-Henares, Food Funct., 8, 2650 (2017); https://doi.org/10.1039/C7FO00611J
B. Garbowska, J. Wieczorek, B. Garbowska, Z. Wieczorek and M. Polak-Sliwinska, J. Elem., 23, (2017); https://doi.org/10.5601/jelem.2017.22.2.1306
ATSDR, Toxicological profile. U.S. Department of Health and Human Services, Agency for Toxic Substances and Disease Registry (2005).
M. Ibourki, O. Hallouch, K. Devkota, D. Guillaume, A. Hirich and S. Gharby, J. Food Compos. Anal., 120, 105330 (2023); https://doi.org/10.1016/j.jfca.2023.105330
H. Matsuura, A. Hokura, F. Katsuki, A. Itoh and H. Haraguchi, Anal. Sci., 17, 391 (2001); https://doi.org/10.2116/analsci.17.391
M.K. Mahani and M.G. Maragheh, Food Anal. Methods, 4, 73 (2011); https://doi.org/10.1007/s12161-009-9120-1
N. Aksuner, E. Henden, Z. Aker, E. Engin and S. Satik, Food Addit. Contam. Part B Surveill., 5, 126 (2012); https://doi.org/10.1080/19393210.2012.675592
T. Vasilopoulou, Neutron Activation Analysis (NAA), In: The Encyclo-pedia of Archaeological Sciences, Wiley, pp. 1-5 (2018); https://doi.org/10.1002/9781119188230.saseas0404
L. Hamidatou, H. Slamene, T. Akhal and B. Zourane, in eds.: F. Kharfi, Concepts, Instrumentation and Techniques of Neutron Activation Analysis, In: Imaging and Radioanalytical Techniques in Interdisciplinary Research-Fundamentals and Cutting Edge Applications, InTechOPen, pp. 141-178 (2013).
ORTEC, GammaVision-32: Gamma-Ray Spectrum Analysis and MCA Emulator. Software User’s Manual (1999).
W. Liyu, IAE/SPAN V5.1 Multipurpose Gamma-Ray Spectrum Analysis Software, China Institute of Atomic Energy, Beijing (1995).
E. Chajduk, Chem. Anal., 54, 841 (2009).
J. Malik, J. Szakova, O. Drabek, J. Balik and L. Kokoska, Food Chem., 111, 520 (2008); https://doi.org/10.1016/j.foodchem.2008.04.009
R. Matsuda, K. Sasaki, H. Sakai, Y. Aoyagi, M. Saeki, Y. Hasegawa, T. Hidaka, K. Ishii, E. Mochizuki, T. Yamamoto, M. Miyabe, Y. Tamura, S. Hori, K. Ikebe, M. Tsuji, M. Kojima, K. Saeki, S. Matsuoka, C. Nishioka, H. Fujita, H. Shiroma, Z. Oshiro and M. Toyoda, Shokuhin Eiseigaku Zasshi, 42, 18 (2001); https://doi.org/10.3358/shokueishi.42.18
K. Shiraishi, S. Ko, Y. Muramatsu, P.V. Zamostyan and N.Y. Tsigankov, Health Phys., 96, 5 (2009); https://doi.org/10.1097/01.HP.0000324209.49716.4c
D. González-Weller, C. Rubio, Á.J. Gutiérrez, G.L. González, J.M.C. Mesa, C.R. Gironés, A.B. Ojeda and A. Hardisson, Food Chem. Toxicol., 62, 856 (2013); https://doi.org/10.1016/j.fct.2013.10.026
https://myhealth.ucsd.edu/Library/NutritionalSupplements/Minerals/19,Cobalt
https://www.fda.gov/food/nutrition-facts-label/daily-value-nutrition-and-supplement-facts-labels
P. Hendrix, R. Van Cauwenbergh, H. Robberecht and H. Deelstra, Z. Lebensm. Unters Forsch., 204, 165 (1997); https://doi.org/10.1007/s002170050055
EFSA Panel on Dietetic Products, EFSA J., 12, 3844 (2014); https://doi.org/10.2903/j.efsa.2014.3844
M. Oria, M. Harrison and V.A. Stallings, Dietary Reference Intakes for Sodium and Potassium, The National Academies Collection: Reports funded by National Institutes of Health, Washington (DC): National Academies Press (USA) (2019).
R.P. Wedeen, B. Berlinger and J. Aaseth, Lanthanum, In: Handbook on the Toxicology of Metals, Academic Press, pp. 903-909 (2015).
https://www.lenntech.com.pt/periodico/scandium.htm
Codex Alimentarius Commission, Working Document for Information and use in Discussions Related to Contaminants and Toxins in the GSCTFF. CODEX: Rome, Italy (2011).