Copyright (c) 2025 P. Bhuvanesh, Jerin. J. P, S. Dhruva Prasad, Narayanasamy. K, Jayaprakash Rajendran

This work is licensed under a Creative Commons Attribution 4.0 International License.
Biological Efficacy Studies of Theoretically Examined L-Valine based Schiff Base
Corresponding Author(s) : R. Jayaprakash
Asian Journal of Chemistry,
Vol. 37 No. 5 (2025): Vol 37 Issue 5, 2025
Abstract
This study reported the effectiveness of the newly synthesized Schiff base, 2-{(E)-[(2,4-dihydroxyphenyl)methylidene]amino}-3-methyl-butanoic acid (LVDHBSB) from chiral L-valine and 2,4-dihydroxy benzaldehyde and characterized with UV, FTIR and 1H NMR techniques. The QSAR, DFT and docking properties in silico studies of the novel Schiff base were also performed. From the results, this work conducted the brine shrimp toxicity, antimicrobial, antidiabetic and antioxidant activities to confirm the biological efficacy of novel L-valine based Schiff base compound. The docking analysis against seven proteins showed the binding scores of -3 to -9 kcal/mol. The Schiff base is supported regardless of the docking values (from -30.49 to -49.86 kcal/mol) in the offline workbench-3. Experimental biological tests exposed good results in brine shrimp lethal assay (LC50 = 208.45 µg/mL), antibacterial activity (ZI = 9-13 mm/150 µg/mL, MIC = 100-150 µg/mL), antidiabetic activity (IC50 = 504.54 µg/mL) and antioxidant (IC50 = 1773 µg/mL) respectively. The compound exhibited good antimicrobial activity within the toxicity limit and the other results are higher than LC50.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- R. Filip, R.G. Puscaselu, L. Anchidin-Norocel, M. Dimian and W.K. Savage, J. Pers. Med., 12, 1295 (2022); https://doi.org/10.3390/jpm12081295
- G.K. Ayyadurai and R. Jayaprakash, Int. J. Innov. Res. Multidisci. Field, 7, 24 (2021); https://doi.org/10.2015/IJIRMF.2455.0620/202104005
- S.R. Shrivastava, P.S. Shrivastava and J. Ramasamy, J. Tradit. Complement. Med., 5, 116 (2015); https://doi.org/10.1016/j.jtcme.2014.11.002
- A.A. Abdel Aziz, A.N.M. Salem, M.A. Sayed and M.M. Aboaly, J. Mol. Struct., 1010, 130 (2012); https://doi.org/10.1016/j.molstruc.2011.11.043
- C.M. da Silva, D.L. Da Silva, L.V. Modolo, R.B. Alves, M.A. De Resende, C.V.B. Martins and A. De Fatima, J. Adv. Res., 2, 1 (2011); https://doi.org/10.1016/j.jare.2010.05.004
- C. Fattuoni, S. Vascellari and T. Pivetta, Amino Acids, 52, 397 (2020); https://doi.org/10.1007/s00726-019-02816-0
- M. Turtoi, M. Anghelache, A.A. Patrascu, C. Maxim, I. Manduteanu, M. Calin and D.L. Popescu, Biomedicines, 9, 562 (2021); https://doi.org/10.3390/biomedicines9050562
- Q. Guo, L. Li, J. Dong, H. Liu, T. Xu and J. Li, Spectrochim. Acta A Mol. Biomol. Spectrosc., 106, 155 (2013); https://doi.org/10.1016/j.saa.2012.12.089
- W.-K. Dong, G. Wang, S.-S. Gong, J.-F. Tong, Y.-X. Sun and X.-H. Gao, Transition Met. Chem., 37, 271 (2012); https://doi.org/10.1007/s11243-012-9585-4
- I. Muegge, Med. Res. Rev., 23, 302 (2003); https://doi.org/10.1002/med.10041
- D.E. Clark, J. Pharm. Sci., 88, 807 (1999); https://doi.org/10.1021/js9804011
- H. Ullah, A.U.H. Shah, K. Ayub and S. Bilal, J. Phys. Chem. C, 117, 4069 (2013); https://doi.org/10.1021/jp311526u
- H. Ullah, A. Rauf, Z. Ullah, Fazl-i-Sattar, M. Anwar, A.-H.A. Shah, G. Uddin and K. Ayub, Spectrochim. Acta A Mol. Biomol. Spectrosc., 118, 210 (2014); https://doi.org/10.1016/j.saa.2013.08.099
- A.D. Becke, J. Chem. Phys., 98, 5648 (1993); https://doi.org/10.1063/1.464913
- C. Lee, W. Yang and R.G. Parr, Phys. Rev. B Condens. Matter, 37, 785 (1988); https://doi.org/10.1103/PhysRevB.37.785
- G.K. Ayyadurai, R. Jayaprakash, A. Shajahan and S. Rathika, J. Biomol. Struct. Dyn., 15, 1 (2023); https://doi.org/10.1080/07391102.2023.2294383
- G. Lever, D.J. Cole, N.D.M. Hine, P.D. Haynes and M.C. Payne, J. Phys. Condens. Matter., 25, 152101 (2013); https://doi.org/10.1088/0953-8984/25/15/152101
- T. Koopmans, Physica, 1, 104 (1934); https://doi.org/10.1016/S0031-8914(34)90011-2
- R. Jayaprakash, S. Saroj Kumar, S. Hemalatha and D. Easwaramoorthy, Int. J. Chemtech Res., 9, 48 (2016).
- A. Colombo, E. Benfenati, M. Karelson and U. Maran, Chemosphere, 72, 772 (2008); https://doi.org/10.1016/j.chemosphere.2008.03.016
- G. Sawanta, S. Ghosha, S. Banesha, J. Bhaumika and U.C. Banerjee, RSC Adv., 6, 49150 (2016); https://doi.org/10.1039/C6RA06879K
- T.M. McCormick, C.R. Bridges, E.I. Carrera, P.M. DiCarmine, G.L. Gibson, J. Hollinger, L.M. Kozycz and D.S. Seferos, Macromolecules, 46, 3879 (2013); https://doi.org/10.1021/ma4005023
- O.V. Gritsenko, Chem. Phys. Lett., 691, 178 (2018); https://doi.org/10.1016/j.cplett.2017.11.019
- H.S. Nirav, K.V. Beena, P.T. Rahul, D.K. Ronak, H.P. Kirit, T. Parth, S.T. Sampark, R. Arabinda and K.R. Dipak, New J. Chem., 41, 10686 (2017); https://doi.org/10.1039/C7NJ01962A
- B.N. Meyer, N.R. Ferrigni, J.E. Putnam, L.B. Jacobsen, D.E. Nichols and J.L. Mclaughlin, Planta Med., 45, 31 (1982); https://doi.org/10.1055/s-2007-971236
- J. Devi, S. Devi and A. Kumar, MedChemComm, 7, 932 (2016); https://doi.org/10.1039/C5MD00554J
- K. Sunitha, S. Nair and P. Palanisamy, Asian J. Chem., 35, 2407 (2023); https://doi.org/10.14233/ajchem.2023.28257
- M. Antolovich, P.D. Prenzler, E. Patsalides, S. McDonald and K. Robards, Analyst, 127, 183 (2002); https://doi.org/10.1039/b009171p
- Y.T. Liu, B.N. Lu, L.N. Xu, L.H. Yin, X.N. Wang, J.Y. Peng and K.X. Liu, Nat. Sci., 2, 175 (2010); https://doi.org/10.4236/ns.2010.23027
- S. Medjahed, S. Belaidi, S. Djekhaba, N. Tchouar and A. Kerassa, J. Bionanosci., 10, 118 (2016); https://doi.org/10.1166/jbns.2016.1358
References
R. Filip, R.G. Puscaselu, L. Anchidin-Norocel, M. Dimian and W.K. Savage, J. Pers. Med., 12, 1295 (2022); https://doi.org/10.3390/jpm12081295
G.K. Ayyadurai and R. Jayaprakash, Int. J. Innov. Res. Multidisci. Field, 7, 24 (2021); https://doi.org/10.2015/IJIRMF.2455.0620/202104005
S.R. Shrivastava, P.S. Shrivastava and J. Ramasamy, J. Tradit. Complement. Med., 5, 116 (2015); https://doi.org/10.1016/j.jtcme.2014.11.002
A.A. Abdel Aziz, A.N.M. Salem, M.A. Sayed and M.M. Aboaly, J. Mol. Struct., 1010, 130 (2012); https://doi.org/10.1016/j.molstruc.2011.11.043
C.M. da Silva, D.L. Da Silva, L.V. Modolo, R.B. Alves, M.A. De Resende, C.V.B. Martins and A. De Fatima, J. Adv. Res., 2, 1 (2011); https://doi.org/10.1016/j.jare.2010.05.004
C. Fattuoni, S. Vascellari and T. Pivetta, Amino Acids, 52, 397 (2020); https://doi.org/10.1007/s00726-019-02816-0
M. Turtoi, M. Anghelache, A.A. Patrascu, C. Maxim, I. Manduteanu, M. Calin and D.L. Popescu, Biomedicines, 9, 562 (2021); https://doi.org/10.3390/biomedicines9050562
Q. Guo, L. Li, J. Dong, H. Liu, T. Xu and J. Li, Spectrochim. Acta A Mol. Biomol. Spectrosc., 106, 155 (2013); https://doi.org/10.1016/j.saa.2012.12.089
W.-K. Dong, G. Wang, S.-S. Gong, J.-F. Tong, Y.-X. Sun and X.-H. Gao, Transition Met. Chem., 37, 271 (2012); https://doi.org/10.1007/s11243-012-9585-4
I. Muegge, Med. Res. Rev., 23, 302 (2003); https://doi.org/10.1002/med.10041
D.E. Clark, J. Pharm. Sci., 88, 807 (1999); https://doi.org/10.1021/js9804011
H. Ullah, A.U.H. Shah, K. Ayub and S. Bilal, J. Phys. Chem. C, 117, 4069 (2013); https://doi.org/10.1021/jp311526u
H. Ullah, A. Rauf, Z. Ullah, Fazl-i-Sattar, M. Anwar, A.-H.A. Shah, G. Uddin and K. Ayub, Spectrochim. Acta A Mol. Biomol. Spectrosc., 118, 210 (2014); https://doi.org/10.1016/j.saa.2013.08.099
A.D. Becke, J. Chem. Phys., 98, 5648 (1993); https://doi.org/10.1063/1.464913
C. Lee, W. Yang and R.G. Parr, Phys. Rev. B Condens. Matter, 37, 785 (1988); https://doi.org/10.1103/PhysRevB.37.785
G.K. Ayyadurai, R. Jayaprakash, A. Shajahan and S. Rathika, J. Biomol. Struct. Dyn., 15, 1 (2023); https://doi.org/10.1080/07391102.2023.2294383
G. Lever, D.J. Cole, N.D.M. Hine, P.D. Haynes and M.C. Payne, J. Phys. Condens. Matter., 25, 152101 (2013); https://doi.org/10.1088/0953-8984/25/15/152101
T. Koopmans, Physica, 1, 104 (1934); https://doi.org/10.1016/S0031-8914(34)90011-2
R. Jayaprakash, S. Saroj Kumar, S. Hemalatha and D. Easwaramoorthy, Int. J. Chemtech Res., 9, 48 (2016).
A. Colombo, E. Benfenati, M. Karelson and U. Maran, Chemosphere, 72, 772 (2008); https://doi.org/10.1016/j.chemosphere.2008.03.016
G. Sawanta, S. Ghosha, S. Banesha, J. Bhaumika and U.C. Banerjee, RSC Adv., 6, 49150 (2016); https://doi.org/10.1039/C6RA06879K
T.M. McCormick, C.R. Bridges, E.I. Carrera, P.M. DiCarmine, G.L. Gibson, J. Hollinger, L.M. Kozycz and D.S. Seferos, Macromolecules, 46, 3879 (2013); https://doi.org/10.1021/ma4005023
O.V. Gritsenko, Chem. Phys. Lett., 691, 178 (2018); https://doi.org/10.1016/j.cplett.2017.11.019
H.S. Nirav, K.V. Beena, P.T. Rahul, D.K. Ronak, H.P. Kirit, T. Parth, S.T. Sampark, R. Arabinda and K.R. Dipak, New J. Chem., 41, 10686 (2017); https://doi.org/10.1039/C7NJ01962A
B.N. Meyer, N.R. Ferrigni, J.E. Putnam, L.B. Jacobsen, D.E. Nichols and J.L. Mclaughlin, Planta Med., 45, 31 (1982); https://doi.org/10.1055/s-2007-971236
J. Devi, S. Devi and A. Kumar, MedChemComm, 7, 932 (2016); https://doi.org/10.1039/C5MD00554J
K. Sunitha, S. Nair and P. Palanisamy, Asian J. Chem., 35, 2407 (2023); https://doi.org/10.14233/ajchem.2023.28257
M. Antolovich, P.D. Prenzler, E. Patsalides, S. McDonald and K. Robards, Analyst, 127, 183 (2002); https://doi.org/10.1039/b009171p
Y.T. Liu, B.N. Lu, L.N. Xu, L.H. Yin, X.N. Wang, J.Y. Peng and K.X. Liu, Nat. Sci., 2, 175 (2010); https://doi.org/10.4236/ns.2010.23027
S. Medjahed, S. Belaidi, S. Djekhaba, N. Tchouar and A. Kerassa, J. Bionanosci., 10, 118 (2016); https://doi.org/10.1166/jbns.2016.1358