Copyright (c) 2025 Dr. Saisha Vinjamuri , Dr. Sharad S, Dr. Narasimha Reddy Parine, Dr. Lakshmi Pethakamsetty

This work is licensed under a Creative Commons Attribution 4.0 International License.
Antimicrobial, Antioxidant and Anticancer Activities of Green Synthesized Silver Nanoparticles using Sea Weed Spongomorpha indica
Corresponding Author(s) : Lakshmi Pethakamsetty
Asian Journal of Chemistry,
Vol. 37 No. 5 (2025): Vol 37 Issue 5, 2025
Abstract
With the increase in antimicrobial resistance, there is always a dire need for the bioactive molecules that can serve as novel therapeutic regiments. The aim of this study is to develop a straight forward scheme of silver nanoparticle synthesis using algal extracts as reducing agent and also to explore optimal parameters for controlling particle morphology. The current research explores the use of biological methods to synthesize silver nanoparticles (AgNPs) using the aqueous extracts of Spongomorpha indica, a Chlorophycean member. The effect of metal ion concentration from 5 mM to 12.5 mM and algal extract 10 mL of 20% (w/v) has been studied for a time interval of 2 h. The biosynthesized AgNPs were characterized by UV-VIS spectroscopy, X-ray diffractometer and field emission gun-scanning electron microscope technique. This confirmed the formation of metallic silver in a face-centered cubic (FCC) crystalline form, with an average crystallite size of approximately 18 nm. Furthermore, the peak patterns of HPTLC chromatograms of aqueous extracts of Spongomorpha indica showed the presence of phenolic compounds especially gallic acid as major phytoconstituent, which might primarily be responsible for the production of AgNPs. The green synthesized nanoparticles of different concentrations were initially tested for antimicrobial properties and MICs were worked out for two susceptible bacterial strains.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M. Barlow, Methods Mol. Biol., 532, 397 (2009); https://doi.org/10.1007/978-1-60327-853-9_23
- E. Bakkeren, M. Diard and W.-D. Hardt, Nat. Rev. Microbiol., 18, 479 (2020); https://doi.org/10.1038/s41579-020-0378-z
- S. Aghamohammad and M. Rohani, Microbiol. Res., 267, 127275 (2023); https://doi.org/10.1016/j.micres.2022.127275
- H. Chandra, P. Bishnoi, A. Yadav, B. Patni, A.P. Mishra and A.R. Nautiyal, Plants, 6, 16 (2017); https://doi.org/10.3390/plants6020016
- S. Malik, K. Muhammad and Y. Waheed, Molecules, 28, 661 (2023); https://doi.org/10.3390/molecules28020661
- B. Elze, Heliyon, 10, e31393 (2024); https://doi.org/10.1016/j.heliyon.2024.e31393
- T. Rambaran and R. Schirhagl, Nanoscale Adv., 4, 3664 (2022); https://doi.org/10.1039/D2NA00439A
- E.O. Ogunsona, R. Muthuraj, E. Ojogbo, O. Valerio and T.H. Mekonnen, Appl. Mater. Today, 18, 100473 (2020); https://doi.org/10.1016/j.apmt.2019.100473
- A. Albanese, P.S. Tang and W.C.W. Chan, Annu. Rev. Biomed. Eng., 14, 1 (2012); https://doi.org/10.1146/annurev-bioeng-071811-150124
- B. Gidwani, V. Sahu, S.S. Shukla, R. Pandey, V. Joshi, V.K. Jain and A. Vyas, J. Drug Deliv. Sci. Technol., 61, 102308 (2021); https://doi.org/10.1016/j.jddst.2020.102308
- S. Bayir, A. Barras, R. Boukherroub, S. Szunerits, L. Raehm, S. Richeter and J. Durand, Photochem. Photobiol. Sci., 17, 1651 (2018); https://doi.org/10.1039/c8pp00143j
- A.C. Chan, M.B. Cadena, H.E. Townley, M.D. Fricker and I.P. Thompso, J.R. Soc. Interface, 14, 201606620 (2016); https://doi.org/10.1098/rsif.2016.0650
- P. Burtin, Electron. J. Environ. Agric. Food Chem., 2, 498 (2003).
- S.S. Sakhalkar and R.L. Mishra, Indian J. Appl. Res., 4, 1 (2014).
- K. Miyaji, Phycol. Res., 44, 27 (1996); https://doi.org/10.1111/j.1440-1835.1996.tb00035.x
- L. Pethakamsetty, K. Kothapenta, H.R. Nammi, L.K. Ruddaraju, P. Kollu, S.G. Yoon and S.V.N. Pammi, J. Environ. Sci., 55, 157 (2017); https://doi.org/10.1016/j.jes.2016.04.027
- M. Obeidat, M. Shatnawi, M. Al-Alawi, E. Al-Zu‘Bi, H. Al-Dmoor, M. Al-Qudah, J. El-Qudah and I. Otri, Res. J. Microbiol., 7, 59 (2012); https://doi.org/10.3923/jm.2012.59.67
- W. Brand-Williams, M.E. Cuvelier and C. Berset, Lebensm. Wiss. Technol., 28, 25 (1995); https://doi.org/10.1016/S0023-6438(95)80008-5
- F. Grbovic, M.S. Stankovic, N. Ðorgevic, D. Šeklic, M. Topuzovic, M. Curèic and S. Markovic, Plants, 2, 371 (2013); https://doi.org/10.3390/plants2030371
- D. Li, Z. Liu, Y. Yuan, Y. Liu and F. Niu, Process Biochem., 50, 357 (2015); https://doi.org/10.1016/j.procbio.2015.01.002
- D.R. Monteiro, L.F. Gorup, S. Silva, M. Negri, E.R. de Camargo, R. Oliveira, D.B. Barbosa and M. Henriques, Biofouling, 27, 711 (2011); https://doi.org/10.1080/08927014.2011.599101
- K.J. Kim, W.S. Sung, B.K. Suh, S.-K. Moon, J.-S. Choi, J.G. Kim and D.G. Lee, Biometals, 22, 235 (2009); https://doi.org/10.1007/s10534-008-9159-2
References
M. Barlow, Methods Mol. Biol., 532, 397 (2009); https://doi.org/10.1007/978-1-60327-853-9_23
E. Bakkeren, M. Diard and W.-D. Hardt, Nat. Rev. Microbiol., 18, 479 (2020); https://doi.org/10.1038/s41579-020-0378-z
S. Aghamohammad and M. Rohani, Microbiol. Res., 267, 127275 (2023); https://doi.org/10.1016/j.micres.2022.127275
H. Chandra, P. Bishnoi, A. Yadav, B. Patni, A.P. Mishra and A.R. Nautiyal, Plants, 6, 16 (2017); https://doi.org/10.3390/plants6020016
S. Malik, K. Muhammad and Y. Waheed, Molecules, 28, 661 (2023); https://doi.org/10.3390/molecules28020661
B. Elze, Heliyon, 10, e31393 (2024); https://doi.org/10.1016/j.heliyon.2024.e31393
T. Rambaran and R. Schirhagl, Nanoscale Adv., 4, 3664 (2022); https://doi.org/10.1039/D2NA00439A
E.O. Ogunsona, R. Muthuraj, E. Ojogbo, O. Valerio and T.H. Mekonnen, Appl. Mater. Today, 18, 100473 (2020); https://doi.org/10.1016/j.apmt.2019.100473
A. Albanese, P.S. Tang and W.C.W. Chan, Annu. Rev. Biomed. Eng., 14, 1 (2012); https://doi.org/10.1146/annurev-bioeng-071811-150124
B. Gidwani, V. Sahu, S.S. Shukla, R. Pandey, V. Joshi, V.K. Jain and A. Vyas, J. Drug Deliv. Sci. Technol., 61, 102308 (2021); https://doi.org/10.1016/j.jddst.2020.102308
S. Bayir, A. Barras, R. Boukherroub, S. Szunerits, L. Raehm, S. Richeter and J. Durand, Photochem. Photobiol. Sci., 17, 1651 (2018); https://doi.org/10.1039/c8pp00143j
A.C. Chan, M.B. Cadena, H.E. Townley, M.D. Fricker and I.P. Thompso, J.R. Soc. Interface, 14, 201606620 (2016); https://doi.org/10.1098/rsif.2016.0650
P. Burtin, Electron. J. Environ. Agric. Food Chem., 2, 498 (2003).
S.S. Sakhalkar and R.L. Mishra, Indian J. Appl. Res., 4, 1 (2014).
K. Miyaji, Phycol. Res., 44, 27 (1996); https://doi.org/10.1111/j.1440-1835.1996.tb00035.x
L. Pethakamsetty, K. Kothapenta, H.R. Nammi, L.K. Ruddaraju, P. Kollu, S.G. Yoon and S.V.N. Pammi, J. Environ. Sci., 55, 157 (2017); https://doi.org/10.1016/j.jes.2016.04.027
M. Obeidat, M. Shatnawi, M. Al-Alawi, E. Al-Zu‘Bi, H. Al-Dmoor, M. Al-Qudah, J. El-Qudah and I. Otri, Res. J. Microbiol., 7, 59 (2012); https://doi.org/10.3923/jm.2012.59.67
W. Brand-Williams, M.E. Cuvelier and C. Berset, Lebensm. Wiss. Technol., 28, 25 (1995); https://doi.org/10.1016/S0023-6438(95)80008-5
F. Grbovic, M.S. Stankovic, N. Ðorgevic, D. Šeklic, M. Topuzovic, M. Curèic and S. Markovic, Plants, 2, 371 (2013); https://doi.org/10.3390/plants2030371
D. Li, Z. Liu, Y. Yuan, Y. Liu and F. Niu, Process Biochem., 50, 357 (2015); https://doi.org/10.1016/j.procbio.2015.01.002
D.R. Monteiro, L.F. Gorup, S. Silva, M. Negri, E.R. de Camargo, R. Oliveira, D.B. Barbosa and M. Henriques, Biofouling, 27, 711 (2011); https://doi.org/10.1080/08927014.2011.599101
K.J. Kim, W.S. Sung, B.K. Suh, S.-K. Moon, J.-S. Choi, J.G. Kim and D.G. Lee, Biometals, 22, 235 (2009); https://doi.org/10.1007/s10534-008-9159-2