Copyright (c) 2025 Ngoc Bich Hoang, Kha Doanh Nguyen, Thi Que Minh Doan, Tran Tuu, chi sy phung, Van Tan Lam, Thi Cam Quyen Ngo

This work is licensed under a Creative Commons Attribution 4.0 International License.
Activated Carbon Synthesized from Nypa fruticans and Areca catechu by Microwave Method as Efficient Adsorbent for the Removal of Chloramphenicol
Corresponding Author(s) : Thi Cam Quyen Ngo
Asian Journal of Chemistry,
Vol. 37 No. 4 (2025): Vol 37 Issue 4, 2025
Abstract
This work employed the microwave-assisted method to prepare activated carbons from the byproducts of Areca catechu (ACAC) shells and Nypa fruticans (ACNF) nut shells. The results show that the materials have a rough surface like a coral reef and contains the characteristic functional groups such as O-H, C=O, C=C, C-O with an amorphous structure. Surface area and pore size were also evaluated with ACAC of 195.93 m2 g-1 and ACNF of 514.91 m2 g-1. The adsorption isotherms predict the size of the pores as small mesopores. The factors affecting ciprofloxacin adsorption using derived activated carbon were also evaluated. For ACAC, the best optimized adsorption conditions were contact time 90 min, temperature 40 ºC, pH 6, dosage 2 g L-1, concentration 80 mg L-1, whereas for ACNF, the best adsorption conditions were contact time 90 min, temperature 40 ºC, pH 4, dosage 1 g L-1, concentration 80 mg L-1. The results show that activated carbon samples ACAC and ACNF follow the pseudo-second-order (PSO) kinetic model, Elovich kinetic model, Dubinin-Radushkevich (D-R) and Temkin isotherms. The Langmuir model was used to record the maximal adsorption capacities of ACAC and ACNF for ciprofloxacin, which were 57.60 mg g-1 and 67.59 mg g-1, respectively. The adsorption process occurs by diffusion with chemisorption interactions on a homogeneous surface for ACAC and heterogeneous surface for ACNF.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S.A. Kraemer, A. Ramachandran and G.G. Perron, Microorganisms. 7, 180 (2019); https://doi.org/10.3390/microorganisms7060180
- J. Kusi, C.O. Ojewole, A.E. Ojewole and I. Nwi-Mozu, Antibiotics. 11, 821 (2022); https://doi.org/10.3390/antibiotics11060821
- M.S. Islam, Y. Zhang, K.N. McPhedran, Y. Liu and M. Gamal El-Din, Appl. Environ. Microbiol., 81, 4037 (2015); https://doi.org/10.1128/AEM.04258-14
- A. Angelakis and S. Snyder, Water, 7, 4887 (2015); https://doi.org/10.3390/w7094887
- G. Boczkaj and A. Fernandes, Chem. Eng. J., 320, 608 (2017);https://doi.org/10.1016/j.cej.2017.03.084
- Z. Wei, J. Liu and W. Shangguan, Chinese J. Catal., 41, 1440 (2020); https://doi.org/10.1016/S1872-2067(19)63448-0
- N.F. Anuar, D.R.S.I. Shah, F.F. Ramli, M.S.M. Zaini, N.A. Mohammadi, A.R.M. Daud and S.S.A. Syed-Hassan, J. Clean. Prod., 401, 136725 (2023); https://doi.org/10.1016/j.jclepro.2023.136725
- M.W. Nugraha, S. Kim, F. Roddick, Z. Xie and L. Fan, J. Water Process Eng., 70, 106960 (2025); https://doi.org/10.1016/j.jwpe.2025.106960
- Z. Heidarinejad, M.H. Dehghani, M. Heidari, G. Javedan, I. Ali and M. Sillanpää, Environ. Chem. Lett., 18, 393 (2020); https://doi.org/10.1007/s10311-019-00955-0
- T.C.Q. Ngo, T. Kim Ngan Tran, H. Dung Chau and B. Ngoc Hoang, Mater. Today Proc., (2023); https://doi.org/10.1016/j.matpr.2023.03.511
- M.F. Hassan, M.A. Sabri, H. Fazal, A. Hafeez, N. Shezad and M. Hussain, J. Anal. Appl. Pyrolysis, 145, 104715 (2020); https://doi.org/10.1016/j.jaap.2019.104715
- T.K.N. Tran, T.C.Q. Ngo, Q.V. Nguyen, T.S. Do and N.B. Hoang, Mater. Today: Proc., 60, 1914 (2022); https://doi.org/10.1016/j.matpr.2022.01.020
- N.B. Hoang, T.C.Q. Ngo, T.K.N. Tran and V.T. Lam, Open Chem., 20, 10 (2022); https://doi.org/10.1515/chem-2021-0117
- K.N.T. Tran, T.B. Tran, S.T. Do, K.O.T. Nguyen and T.V. Lam, Indo. J. Chem., 22, 96 (2022); https://doi.org/10.22146/ijc.67742
- B.G. Alhogbi, S. Altayeb, E.A. Bahaidarah and M.F. Zawrah, Processes, 9, 416 (2021); https://doi.org/10.3390/pr9030416
- R.S. Piriya, R.M. Jayabalakrishnan, M. Maheswari, K. Boomiraj and S. Oumabady, Water Sci. Technol., 83, 1167 (2021); https://doi.org/10.2166/wst.2021.050
- S. Ravulapalli and R. Kunta, J. Environ. Chem. Eng., 6, 4298 (2018); https://doi.org/10.1016/j.jece.2018.06.033
- F.G. de Souza, F.F. de Araújo, D. de Paulo Farias, A.W. Zanotto, I.A. Neri-Numa and G.M. Pastore, Food Res. Int., 138, 109690 (2020); https://doi.org/10.1016/j.foodres.2020.109690
- V.T. Lam, B. Hoang and N.T.C. Quyen, Adv. Sci. Technol., 122, 57 (2023); https://doi.org/10.4028/p-0iyi0c
- N.T.C. Quyen, T.L. Van, L.G. Bach and B.N. Hoang, Key Eng. Mater., 949, 175 (2023); https://doi.org/10.4028/p-VfN0Z5
- N. Van Phuoc, H.L. Quoc, T.T. Tran, L. Van Tan and B.N. Hoang, J. Chem. Res., 47, 17475198231212143 (2023); https://doi.org/10.1177/17475198231212143
- L. Zhu, Q. Wang, H. Wang, F. Zhao and D. Li, Ind. Crops Prod., 187(B), 115458 (2022); https://doi.org/10.1016/j.indcrop.2022.115458
- T. Van Tran, Q.T.P. Bui, T.D. Nguyen, V.T.T. Ho and L.G. Bach, Water Sci. Technol., 75, 2047 (2017); https://doi.org/10.2166/wst.2017.066
- B. Ngoc Hoang, T. Thi Nguyen, D. Van Nguyen and L. Van Tan, Mater. Today Proc., 38, 3046 (2021); https://doi.org/10.1016/j.matpr.2020.09.391
- A. Pal, A. Giri and A. Bandyopadhyay, J. Environ. Chem. Eng., 4, 1731 (2016); https://doi.org/10.1016/j.jece.2016.02.034
- M. Kosmulski, Adv. Colloid Interface Sci., 275, 102064 (2020); https://doi.org/10.1016/j.cis.2019.102064
- M. Kosmulski, Adv. Colloid Interface Sci., 319, 102973 (2023); https://doi.org/10.1016/j.cis.2023.102973
- S. Joshi, R.G. Shrestha, R.R. Pradhananga, K. Ariga and L.K. Shrestha, J. Carbon Res., 8, 1 (2022); https://doi.org/10.3390/c8010002
- S. Wang, H. Nam, T.B. Gebreegziabher and H. Nam, Eng. Rep., 2, e12083 (2020); https://doi.org/10.1002/eng2.12083
- K.S.W. Sing, Pure Appl. Chem., 57, 603 (1985); https://doi.org/10.1351/pac198557040603
- S. Lalhmunsiama, S. Lee, S. Choi and D. Tiwari, Metals, 7, 248 (2017); https://doi.org/10.3390/met7070248
- R. Farma, I. Apriyani, Awitdrus, M. Deraman, E. Taer, R.N. Setiadi and A.S. Rini, J. Energy Storage, 67, 107611 (2023); https://doi.org/10.1016/j.est.2023.107611
- S. Raghav and D. Kumar, J. Chem. Eng. Data, 63, 1682 (2018); https://doi.org/10.1021/acs.jced.8b00024
- R.R. Karri, J.N. Sahu and N.S. Jayakumar, J. Taiwan Inst. Chem. Eng., 80, 472 (2017); https://doi.org/10.1016/j.jtice.2017.08.004
- N. Ayawei, A.N. Ebelegi and D. Wankasi, J. Chem., 2017, 3039817 (2017); https://doi.org/10.1155/2017/3039817
- X. Chen, Information, 6, 14 (2015); https://doi.org/10.3390/info6010014
References
S.A. Kraemer, A. Ramachandran and G.G. Perron, Microorganisms. 7, 180 (2019); https://doi.org/10.3390/microorganisms7060180
J. Kusi, C.O. Ojewole, A.E. Ojewole and I. Nwi-Mozu, Antibiotics. 11, 821 (2022); https://doi.org/10.3390/antibiotics11060821
M.S. Islam, Y. Zhang, K.N. McPhedran, Y. Liu and M. Gamal El-Din, Appl. Environ. Microbiol., 81, 4037 (2015); https://doi.org/10.1128/AEM.04258-14
A. Angelakis and S. Snyder, Water, 7, 4887 (2015); https://doi.org/10.3390/w7094887
G. Boczkaj and A. Fernandes, Chem. Eng. J., 320, 608 (2017);https://doi.org/10.1016/j.cej.2017.03.084
Z. Wei, J. Liu and W. Shangguan, Chinese J. Catal., 41, 1440 (2020); https://doi.org/10.1016/S1872-2067(19)63448-0
N.F. Anuar, D.R.S.I. Shah, F.F. Ramli, M.S.M. Zaini, N.A. Mohammadi, A.R.M. Daud and S.S.A. Syed-Hassan, J. Clean. Prod., 401, 136725 (2023); https://doi.org/10.1016/j.jclepro.2023.136725
M.W. Nugraha, S. Kim, F. Roddick, Z. Xie and L. Fan, J. Water Process Eng., 70, 106960 (2025); https://doi.org/10.1016/j.jwpe.2025.106960
Z. Heidarinejad, M.H. Dehghani, M. Heidari, G. Javedan, I. Ali and M. Sillanpää, Environ. Chem. Lett., 18, 393 (2020); https://doi.org/10.1007/s10311-019-00955-0
T.C.Q. Ngo, T. Kim Ngan Tran, H. Dung Chau and B. Ngoc Hoang, Mater. Today Proc., (2023); https://doi.org/10.1016/j.matpr.2023.03.511
M.F. Hassan, M.A. Sabri, H. Fazal, A. Hafeez, N. Shezad and M. Hussain, J. Anal. Appl. Pyrolysis, 145, 104715 (2020); https://doi.org/10.1016/j.jaap.2019.104715
T.K.N. Tran, T.C.Q. Ngo, Q.V. Nguyen, T.S. Do and N.B. Hoang, Mater. Today: Proc., 60, 1914 (2022); https://doi.org/10.1016/j.matpr.2022.01.020
N.B. Hoang, T.C.Q. Ngo, T.K.N. Tran and V.T. Lam, Open Chem., 20, 10 (2022); https://doi.org/10.1515/chem-2021-0117
K.N.T. Tran, T.B. Tran, S.T. Do, K.O.T. Nguyen and T.V. Lam, Indo. J. Chem., 22, 96 (2022); https://doi.org/10.22146/ijc.67742
B.G. Alhogbi, S. Altayeb, E.A. Bahaidarah and M.F. Zawrah, Processes, 9, 416 (2021); https://doi.org/10.3390/pr9030416
R.S. Piriya, R.M. Jayabalakrishnan, M. Maheswari, K. Boomiraj and S. Oumabady, Water Sci. Technol., 83, 1167 (2021); https://doi.org/10.2166/wst.2021.050
S. Ravulapalli and R. Kunta, J. Environ. Chem. Eng., 6, 4298 (2018); https://doi.org/10.1016/j.jece.2018.06.033
F.G. de Souza, F.F. de Araújo, D. de Paulo Farias, A.W. Zanotto, I.A. Neri-Numa and G.M. Pastore, Food Res. Int., 138, 109690 (2020); https://doi.org/10.1016/j.foodres.2020.109690
V.T. Lam, B. Hoang and N.T.C. Quyen, Adv. Sci. Technol., 122, 57 (2023); https://doi.org/10.4028/p-0iyi0c
N.T.C. Quyen, T.L. Van, L.G. Bach and B.N. Hoang, Key Eng. Mater., 949, 175 (2023); https://doi.org/10.4028/p-VfN0Z5
N. Van Phuoc, H.L. Quoc, T.T. Tran, L. Van Tan and B.N. Hoang, J. Chem. Res., 47, 17475198231212143 (2023); https://doi.org/10.1177/17475198231212143
L. Zhu, Q. Wang, H. Wang, F. Zhao and D. Li, Ind. Crops Prod., 187(B), 115458 (2022); https://doi.org/10.1016/j.indcrop.2022.115458
T. Van Tran, Q.T.P. Bui, T.D. Nguyen, V.T.T. Ho and L.G. Bach, Water Sci. Technol., 75, 2047 (2017); https://doi.org/10.2166/wst.2017.066
B. Ngoc Hoang, T. Thi Nguyen, D. Van Nguyen and L. Van Tan, Mater. Today Proc., 38, 3046 (2021); https://doi.org/10.1016/j.matpr.2020.09.391
A. Pal, A. Giri and A. Bandyopadhyay, J. Environ. Chem. Eng., 4, 1731 (2016); https://doi.org/10.1016/j.jece.2016.02.034
M. Kosmulski, Adv. Colloid Interface Sci., 275, 102064 (2020); https://doi.org/10.1016/j.cis.2019.102064
M. Kosmulski, Adv. Colloid Interface Sci., 319, 102973 (2023); https://doi.org/10.1016/j.cis.2023.102973
S. Joshi, R.G. Shrestha, R.R. Pradhananga, K. Ariga and L.K. Shrestha, J. Carbon Res., 8, 1 (2022); https://doi.org/10.3390/c8010002
S. Wang, H. Nam, T.B. Gebreegziabher and H. Nam, Eng. Rep., 2, e12083 (2020); https://doi.org/10.1002/eng2.12083
K.S.W. Sing, Pure Appl. Chem., 57, 603 (1985); https://doi.org/10.1351/pac198557040603
S. Lalhmunsiama, S. Lee, S. Choi and D. Tiwari, Metals, 7, 248 (2017); https://doi.org/10.3390/met7070248
R. Farma, I. Apriyani, Awitdrus, M. Deraman, E. Taer, R.N. Setiadi and A.S. Rini, J. Energy Storage, 67, 107611 (2023); https://doi.org/10.1016/j.est.2023.107611
S. Raghav and D. Kumar, J. Chem. Eng. Data, 63, 1682 (2018); https://doi.org/10.1021/acs.jced.8b00024
R.R. Karri, J.N. Sahu and N.S. Jayakumar, J. Taiwan Inst. Chem. Eng., 80, 472 (2017); https://doi.org/10.1016/j.jtice.2017.08.004
N. Ayawei, A.N. Ebelegi and D. Wankasi, J. Chem., 2017, 3039817 (2017); https://doi.org/10.1155/2017/3039817
X. Chen, Information, 6, 14 (2015); https://doi.org/10.3390/info6010014