Copyright (c) 2025 Ms. Kirti Hooda, Dr. Anshul Singh, Dr. Virender Singh Kundu, Mr. Aman Kumar

This work is licensed under a Creative Commons Attribution 4.0 International License.
Improved Performance of Dye Sensitized Solar Cells using Ag/Ca doped and co-doped ZnO as Photoanode Materials
Corresponding Author(s) : Anshul Singh
Asian Journal of Chemistry,
Vol. 37 No. 4 (2025): Vol 37 Issue 4, 2025
Abstract
An innovative technology for energy harvesting that transforms direct sunlight into electrical energy is dye-sensitized solar cells. Since these cells are flexible, lightweight, inexpensive, environmentally benign and involve a straightforward production method, they have far superior qualities to silicon-based solar cells. Since, a photoanode is the backbone of dye-sensitized solar cell (DSSC), we synthesized ZnO and Ag/Ca doped-codoped ZnO nanoparticles using sol-gel technique. The optical, morphological, and structural characteristics of prepared samples were thoroughly examined. XRD, FESEM-EDX, and UV-Vis were among the methods used to characterize the produced nanoparticles. The X-ray diffraction data showed that the wurtzite structure was single-phase hexagonal and did not contain any impurity phases. The effective integration of Ag/Ca ions into the host ZnO structure is further validated by XRD. Additionally, the XRD investigation demonstrates that the Wurtzite structure of ZnO remains unchanged when Ag/Ca is substituted for ZnO. According to the FESEM morphological images, the produced nanoparticles have a spherical form. The EDAX spectra confirm the presence of Zn, Ca, Ag and O atoms in the samples, while the optical transparency and band gap values were analyzed using UV-Vis spectroscopy. The Co-doping Ca/Ag resulted in a decrease in the energy band gap as determined by Tauc’ plot. J-V characterisation was used to assess the electrochemical properties of fill factor, open circuit voltage, and short circuit current density. This signifies a 215.39% enhancement in efficiency compared to the pure ZnO-based photoanode utilized in DSSCs.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo and H. Pettersson, Chem. Rev., 110, 6595 (2010); https://doi.org/10.1021/cr900356p
- J. Gong, K. Sumathy, Q. Qiao and Z. Zhou, Renew. Sustain. Energy Rev., 68, 234 (2017); https://doi.org/10.1016/j.rser.2016.09.097
- A.B. Muñoz-García, I. Benesperi, G. Boschloo, J.J. Concepcion, J.H. Delcamp, E.A. Gibson, G.J. Meyer, M. Pavone, H. Pettersson, A. Hagfeldt and M. Freitag, Chem. Soc. Rev., 50, 12450 (2021); https://doi.org/10.1039/D0CS01336F
- J.H. Yum, E. Baranoff, S. Wenger, M.K. Nazeeruddin and M. Grätzel, Energy Environ. Sci., 4, 842 (2011); https://doi.org/10.1039/C0EE00536C
- S. Suhaimi, M.M. Shahimin, Z.A. Alahmed, J. Chysky and A.H. Reshak, Int. J. Electrochem. Sci., 10, 2859 (2015); https://doi.org/10.1016/S1452-3981(23)06503-3
- N.G. Park, M.G. Kang, K.M. Kim, K.S. Ryu, S.H. Chang, D.-K. Kim, J. van de Lagemaat, K.D. Benkstein and A.J. Frank, Langmuir, 20, 4246 (2004); https://doi.org/10.1021/la036122x
- S. Raha and M. Ahmaruzzaman, Nanoscale Adv., 4, 1868 (2022); https://doi.org/10.1039/D1NA00880C
- S.S. Kanmani and K. Ramachandran, Renew. Energy, 43, 149 (2012); https://doi.org/10.1016/j.renene.2011.12.014
- N. Sakai, T. Miyasaka and T.N. Murakami, J. Phys. Chem. C, 117, 10949 (2013); https://doi.org/10.1021/jp401106u
- J. Jung, J. Myoung and S. Lim, Thin Solid Films, 520, 5779 (2012); https://doi.org/10.1016/j.tsf.2012.04.052
- M.B. Tahir, H. Javad, K. Nadeem and A. Majid, Surf. Rev. Lett., 25, 1930001 (2018); https://doi.org/10.1142/S0218625X19300016
- R. Kumar, A. Umar, G. Kumar, H.S. Nalwa, A. Kumar and M.S. Akhtar, J. Mater. Sci., 52, 4743 (2017); https://doi.org/10.1007/s10853-016-0668-z
- B. Boro, B. Gogoi, B.M. Rajbongshi and A. Ramchiary, Renew. Sustain. Energy Rev., 81, 2264 (2018); https://doi.org/10.1016/j.rser.2017.06.035
- R. Vittal and K.C. Ho, Renew. Sustain. Energy Rev., 70, 920 (2017); https://doi.org/10.1016/j.rser.2016.11.273
- M. Law, L.E. Greene, A. Radenovic, T. Kuykendall, J. Liphardt and P. Yang, J. Phys. Chem. B, 110, 22652 (2006); https://doi.org/10.1021/jp0648644
- A.S. Mokrushin, I.A. Nagornov, Y.M. Gorban, S.A. Dmitrieva, T.L. Simonenko, N.P. Simonenko, M.S. Doronina, I.R. Vakhitov, M.S. Nikitenko, D.Y. Khudonogov, O.V. Vershinina and E.P. Simonenko, J. Alloys Comp., 1009, 176856 (2024); https://doi.org/10.1016/j.jallcom.2024.176856
- M. Kaur and N.K. Verma, J. Mater. Sci. Mater. Electron., 24, 3617 (2013); https://doi.org/10.1007/s10854-013-1293-0
- G. Divitini, N.O.V. Plank, H.J. Snaith, M.E. Welland and C. Ducati, J. Phys. Conf. Ser., 241, 012031 (2010); https://doi.org/10.1088/1742-6596/241/1/012031
- N.O.V. Plank, H.J. Snaith, C. Ducati, J.S. Bendall, L. Schmidt-Mende and M.E. Welland, Nanotechnology, 19, 465603 (2008); https://doi.org/10.1088/0957-4484/19/46/465603
- S. Nilphai, M. Thepnurat, N. Hongsith, S. Phadungdhitidhada, P. Ruankham, A. Gardchareon, D. Wongratanaphisan and S. Choopun, Key Eng. Mater., 675-676, 158 (2016); https://doi.org/10.4028/www.scientific.net/KEM.675-676.158
- M. Kaur and N.K. Verma, J. Mater. Sci. Mater. Electron., 24, 4980 (2013); https://doi.org/10.1007/s10854-013-1512-8
- S. Rehman, R. Ullah, A.M. Butt and N.D. Gohar, J. Hazard. Mater., 170, 560 (2009); https://doi.org/10.1016/j.jhazmat.2009.05.064
- Y. Peng, S. Qin, W.-S. Wang and A.-W. Xu, CrystEngComm, 15, 6518 (2013); https://doi.org/10.1039/c3ce40798e
- K.C. Barick, S. Singh, M. Aslam and D. Bahadur, Micropor. Mesopor. Mater., 134, 195 (2010); https://doi.org/10.1016/j.micromeso.2010.05.026
- A.M. Toufiq, R. Hussain, A. Shah, A. Mahmood, A. Rehman, A. Khan and S. Rahman, Physica B, 604, 412731 (2021); https://doi.org/10.1016/j.physb.2020.412731
- E. Akman, J. Mol. Liq., 317, 114223 (2020); https://doi.org/10.1016/j.molliq.2020.114223
- D. Escorcia-Díaz, S. García-Mora, L. Rendón-Castrillón, M. Ramírez-Carmona and C. Ocampo-López, Nanomaterials, 13, 2586 (2023); https://doi.org/10.3390/nano13182586
- F. Aslan, A. Tumbul, A. Göktas, R. Budakoglu and I.H. Mutlu, J. Sol-Gel Sci. Technol., 80, 389 (2016); https://doi.org/10.1007/s10971-016-4131-z
- M.N.H. Mia, M.F. Pervez, M.K. Hossain, M. Reefaz Rahman, M. Uddin, M. Jalal and M.A. Al Mashud, Results Phys., 7, 2683 (2017); https://doi.org/10.1016/j.rinp.2017.07.047
- V. Cauda, D. Pugliese, N. Garino, A. Sacco, S. Bianco, F. Bella, A. Lamberti and C. Gerbaldi, Energy, 65, 639 (2014); https://doi.org/10.1016/j.energy.2013.12.025
- N.S. Gultom, H. Abdullah and D.-H. Kuo, Appl. Catal. B, 272, 118985 (2020); https://doi.org/10.1016/j.apcatb.2020.118985
- H.A.H. Alshamsi and B.S. Hussein, Orient. J. Chem., 34, 1898 (2018); https://doi.org/10.13005/ojc/3404025
- M. Mujahid and O.A. Al-Hartomy, Mater. Res. Innov., 27, 194 (2023); https://doi.org/10.1080/14328917.2022.2113270
- M. Amjad, M.I. Khan, N. Alwadai, M. Irfan, Ikram-ul-Haq, H. Albalawi, A.H. Almuqrin, M.M. Almoneef and M. Iqbal, Nanomaterials, 12, 1057 (2022); https://doi.org/10.3390/nano12071057
- J. Chauhan, N. Srivastav, A. Dugaya and D. Pandey, MOJ Polym. Sci., 1, 26 (2017); https://doi.org/10.15406/mojps.2017.01.00005
- T. Munir, M. Kashif, K. Mahmood, M. Imran, A. Ali, N. Sabir, N. Amin, A. Mahmood, H. Ali and N. Ahmed, J. Ovonic Res., 15, 173 (2019).
- A. Hussain, S. Fiaz, A. Almohammedi and A. Waqar, Heliyon, 10, e35725 (2024); https://doi.org/10.1016/j.heliyon.2024.e35725
- B.D. Viezbicke, S. Patel, B.E. Davis and D.P. Birnie III, Phys. Status Solidii, B Basic Res., 252, 1700 (2015); https://doi.org/10.1002/pssb.201552007
- Q. Deng, X. Han, Y. Gao and G. Shao, J. Appl. Phys., 112, 013523 (2012); https://doi.org/10.1063/1.4733971
- S. Al-Ariki, N.A.A. Yahya, S.A. Al-A’nsi, M.H.H. Jumali, A.N. Jannah and R. Abd-Shukor, Sci. Rep., 11, 11948 (2021); https://doi.org/10.1038/s41598-021-91439-1
- S. Baruah and J. Dutta, Sci. Technol. Adv. Mater., 10, 013001 (2009); https://doi.org/10.1088/1468-6996/10/1/013001
- H..A.O. Alkhayatt, J. Kufa – Phys. 9(2), 41-55 (2017); https://doi.org/10.31257/2018/JKP/2017/v9.i2.9419
- S.M. Hosseini, I.A. Sarsari, P. Kameli and H. Salamati, J. Alloys Compd., 640, 408 (2015); https://doi.org/10.1016/j.jallcom.2015.03.136
- N.L. Tarwal, V.L. Patil, J.R. Rani, K.V. Gurav, M.S. Khandekar, N.S. Harale, J.S. Shaikh, P.S. Patil and J.H. Jang, Chinese J. Phys., 73, 581 (2021); https://doi.org/10.1016/j.cjph.2021.03.031
- K.N. Ganesha, H. Chandrappa, S.R. Kumarswamy, V. Annadurai, H. Somashekarappa and R Somashekar, Non-Metallic Mater. Sci., 5, 49 (2023); https://doi.org/10.30564/nmms.v5i1.5677
References
A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo and H. Pettersson, Chem. Rev., 110, 6595 (2010); https://doi.org/10.1021/cr900356p
J. Gong, K. Sumathy, Q. Qiao and Z. Zhou, Renew. Sustain. Energy Rev., 68, 234 (2017); https://doi.org/10.1016/j.rser.2016.09.097
A.B. Muñoz-García, I. Benesperi, G. Boschloo, J.J. Concepcion, J.H. Delcamp, E.A. Gibson, G.J. Meyer, M. Pavone, H. Pettersson, A. Hagfeldt and M. Freitag, Chem. Soc. Rev., 50, 12450 (2021); https://doi.org/10.1039/D0CS01336F
J.H. Yum, E. Baranoff, S. Wenger, M.K. Nazeeruddin and M. Grätzel, Energy Environ. Sci., 4, 842 (2011); https://doi.org/10.1039/C0EE00536C
S. Suhaimi, M.M. Shahimin, Z.A. Alahmed, J. Chysky and A.H. Reshak, Int. J. Electrochem. Sci., 10, 2859 (2015); https://doi.org/10.1016/S1452-3981(23)06503-3
N.G. Park, M.G. Kang, K.M. Kim, K.S. Ryu, S.H. Chang, D.-K. Kim, J. van de Lagemaat, K.D. Benkstein and A.J. Frank, Langmuir, 20, 4246 (2004); https://doi.org/10.1021/la036122x
S. Raha and M. Ahmaruzzaman, Nanoscale Adv., 4, 1868 (2022); https://doi.org/10.1039/D1NA00880C
S.S. Kanmani and K. Ramachandran, Renew. Energy, 43, 149 (2012); https://doi.org/10.1016/j.renene.2011.12.014
N. Sakai, T. Miyasaka and T.N. Murakami, J. Phys. Chem. C, 117, 10949 (2013); https://doi.org/10.1021/jp401106u
J. Jung, J. Myoung and S. Lim, Thin Solid Films, 520, 5779 (2012); https://doi.org/10.1016/j.tsf.2012.04.052
M.B. Tahir, H. Javad, K. Nadeem and A. Majid, Surf. Rev. Lett., 25, 1930001 (2018); https://doi.org/10.1142/S0218625X19300016
R. Kumar, A. Umar, G. Kumar, H.S. Nalwa, A. Kumar and M.S. Akhtar, J. Mater. Sci., 52, 4743 (2017); https://doi.org/10.1007/s10853-016-0668-z
B. Boro, B. Gogoi, B.M. Rajbongshi and A. Ramchiary, Renew. Sustain. Energy Rev., 81, 2264 (2018); https://doi.org/10.1016/j.rser.2017.06.035
R. Vittal and K.C. Ho, Renew. Sustain. Energy Rev., 70, 920 (2017); https://doi.org/10.1016/j.rser.2016.11.273
M. Law, L.E. Greene, A. Radenovic, T. Kuykendall, J. Liphardt and P. Yang, J. Phys. Chem. B, 110, 22652 (2006); https://doi.org/10.1021/jp0648644
A.S. Mokrushin, I.A. Nagornov, Y.M. Gorban, S.A. Dmitrieva, T.L. Simonenko, N.P. Simonenko, M.S. Doronina, I.R. Vakhitov, M.S. Nikitenko, D.Y. Khudonogov, O.V. Vershinina and E.P. Simonenko, J. Alloys Comp., 1009, 176856 (2024); https://doi.org/10.1016/j.jallcom.2024.176856
M. Kaur and N.K. Verma, J. Mater. Sci. Mater. Electron., 24, 3617 (2013); https://doi.org/10.1007/s10854-013-1293-0
G. Divitini, N.O.V. Plank, H.J. Snaith, M.E. Welland and C. Ducati, J. Phys. Conf. Ser., 241, 012031 (2010); https://doi.org/10.1088/1742-6596/241/1/012031
N.O.V. Plank, H.J. Snaith, C. Ducati, J.S. Bendall, L. Schmidt-Mende and M.E. Welland, Nanotechnology, 19, 465603 (2008); https://doi.org/10.1088/0957-4484/19/46/465603
S. Nilphai, M. Thepnurat, N. Hongsith, S. Phadungdhitidhada, P. Ruankham, A. Gardchareon, D. Wongratanaphisan and S. Choopun, Key Eng. Mater., 675-676, 158 (2016); https://doi.org/10.4028/www.scientific.net/KEM.675-676.158
M. Kaur and N.K. Verma, J. Mater. Sci. Mater. Electron., 24, 4980 (2013); https://doi.org/10.1007/s10854-013-1512-8
S. Rehman, R. Ullah, A.M. Butt and N.D. Gohar, J. Hazard. Mater., 170, 560 (2009); https://doi.org/10.1016/j.jhazmat.2009.05.064
Y. Peng, S. Qin, W.-S. Wang and A.-W. Xu, CrystEngComm, 15, 6518 (2013); https://doi.org/10.1039/c3ce40798e
K.C. Barick, S. Singh, M. Aslam and D. Bahadur, Micropor. Mesopor. Mater., 134, 195 (2010); https://doi.org/10.1016/j.micromeso.2010.05.026
A.M. Toufiq, R. Hussain, A. Shah, A. Mahmood, A. Rehman, A. Khan and S. Rahman, Physica B, 604, 412731 (2021); https://doi.org/10.1016/j.physb.2020.412731
E. Akman, J. Mol. Liq., 317, 114223 (2020); https://doi.org/10.1016/j.molliq.2020.114223
D. Escorcia-Díaz, S. García-Mora, L. Rendón-Castrillón, M. Ramírez-Carmona and C. Ocampo-López, Nanomaterials, 13, 2586 (2023); https://doi.org/10.3390/nano13182586
F. Aslan, A. Tumbul, A. Göktas, R. Budakoglu and I.H. Mutlu, J. Sol-Gel Sci. Technol., 80, 389 (2016); https://doi.org/10.1007/s10971-016-4131-z
M.N.H. Mia, M.F. Pervez, M.K. Hossain, M. Reefaz Rahman, M. Uddin, M. Jalal and M.A. Al Mashud, Results Phys., 7, 2683 (2017); https://doi.org/10.1016/j.rinp.2017.07.047
V. Cauda, D. Pugliese, N. Garino, A. Sacco, S. Bianco, F. Bella, A. Lamberti and C. Gerbaldi, Energy, 65, 639 (2014); https://doi.org/10.1016/j.energy.2013.12.025
N.S. Gultom, H. Abdullah and D.-H. Kuo, Appl. Catal. B, 272, 118985 (2020); https://doi.org/10.1016/j.apcatb.2020.118985
H.A.H. Alshamsi and B.S. Hussein, Orient. J. Chem., 34, 1898 (2018); https://doi.org/10.13005/ojc/3404025
M. Mujahid and O.A. Al-Hartomy, Mater. Res. Innov., 27, 194 (2023); https://doi.org/10.1080/14328917.2022.2113270
M. Amjad, M.I. Khan, N. Alwadai, M. Irfan, Ikram-ul-Haq, H. Albalawi, A.H. Almuqrin, M.M. Almoneef and M. Iqbal, Nanomaterials, 12, 1057 (2022); https://doi.org/10.3390/nano12071057
J. Chauhan, N. Srivastav, A. Dugaya and D. Pandey, MOJ Polym. Sci., 1, 26 (2017); https://doi.org/10.15406/mojps.2017.01.00005
T. Munir, M. Kashif, K. Mahmood, M. Imran, A. Ali, N. Sabir, N. Amin, A. Mahmood, H. Ali and N. Ahmed, J. Ovonic Res., 15, 173 (2019).
A. Hussain, S. Fiaz, A. Almohammedi and A. Waqar, Heliyon, 10, e35725 (2024); https://doi.org/10.1016/j.heliyon.2024.e35725
B.D. Viezbicke, S. Patel, B.E. Davis and D.P. Birnie III, Phys. Status Solidii, B Basic Res., 252, 1700 (2015); https://doi.org/10.1002/pssb.201552007
Q. Deng, X. Han, Y. Gao and G. Shao, J. Appl. Phys., 112, 013523 (2012); https://doi.org/10.1063/1.4733971
S. Al-Ariki, N.A.A. Yahya, S.A. Al-A’nsi, M.H.H. Jumali, A.N. Jannah and R. Abd-Shukor, Sci. Rep., 11, 11948 (2021); https://doi.org/10.1038/s41598-021-91439-1
S. Baruah and J. Dutta, Sci. Technol. Adv. Mater., 10, 013001 (2009); https://doi.org/10.1088/1468-6996/10/1/013001
H..A.O. Alkhayatt, J. Kufa – Phys. 9(2), 41-55 (2017); https://doi.org/10.31257/2018/JKP/2017/v9.i2.9419
S.M. Hosseini, I.A. Sarsari, P. Kameli and H. Salamati, J. Alloys Compd., 640, 408 (2015); https://doi.org/10.1016/j.jallcom.2015.03.136
N.L. Tarwal, V.L. Patil, J.R. Rani, K.V. Gurav, M.S. Khandekar, N.S. Harale, J.S. Shaikh, P.S. Patil and J.H. Jang, Chinese J. Phys., 73, 581 (2021); https://doi.org/10.1016/j.cjph.2021.03.031
K.N. Ganesha, H. Chandrappa, S.R. Kumarswamy, V. Annadurai, H. Somashekarappa and R Somashekar, Non-Metallic Mater. Sci., 5, 49 (2023); https://doi.org/10.30564/nmms.v5i1.5677