Copyright (c) 2025 Gowri Shanmugapriya G, Rajikha R, Analisa S, Umamaheswari S, Elaya Kumar K, Sathana Vijayabalan

This work is licensed under a Creative Commons Attribution 4.0 International License.
Synthesis, Characterization, Magnetic and Electrochemical Properties of Lithium Cobalt Ferrites: A High-Performance Materials for Lithium-Ion Batteries
Corresponding Author(s) : V. Sathana
Asian Journal of Chemistry,
Vol. 37 No. 4 (2025): Vol 37 Issue 4, 2025
Abstract
The lithium cobalt ferrite with different concentration, Li0.75Co(5+3x/8)Fe2-yO4 (x = 0, 1, 2, 3, 4) (y = 0, 0.25, 0.5, 0.75, 1) were synthesized by sol-gel process. The structural, morphological, magnetic and electrical properties were investigated with XRD, FESEM-EDS mapping, FTIR, VSM and impedance techniques. The addition of lithium, a reactive soft alkali metal, greatly improves the electrochemical conduction processes when it is blended with ferrite. The change from bulk ferrite to nanomaterials results in significant alterations to its physical, magnetic and electrical characteristics, substituting cobalt alters pure lithium ferrite into a magnetically active substance. The development of cubic structure in all the compounds was proved from X-ray diffraction analysis. The VSM results demonstrated that all prepared materials exhibit soft magnetic characteristics, with a squareness ratio (Mr/Ms) of less than 0.5. This indicates the presence of multi domain magnetic particles which are appropriate for use in transformer coils and cores, resulting in lower induction. The morphology and chemical composition of the composite were confirmed in FESEM and EDS mapping analysis. FTIR analysis shows metal-oxygen bonds (Fe-O, Co-O) confirmed the presence of lithium cobalt ferrite. From impedance studies, the electrochemical properties of the prepared compounds were analyzed. The dielectric parameters were examined using impedance analysis, revealing enhanced electrical conductivity and emphasizing the multifunctional characteristics of the synthesized material, which may render it applicable in diverse fields necessitating both magnetic and dielectric features.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- N. Baig, I. Kammakakam and W. Falath, Mater. Adv., 2, 1821 (2021); https://doi.org/10.1039/D0MA00807A
- H.M. Saleh and A.I. Hassan, Sustainability, 15, 10891 (2023); https://doi.org/10.3390/su151410891
- L. Pokrajac, A. Abbas, W. Chrzanowski, G.M. Dias, B.J. Eggleton, S. Maguire, E. Maine, T. Malloy, J. Nathwani, L. Nazar, A. Sips, J. Sone, A. van den Berg, P.S. Weiss and S. Mitra, ACS Nano, 15, 18608 (2021); https://doi.org/10.1021/acsnano.1c10919
- C.A. Charitidis, P. Georgiou, M.A. Koklioti, A.-F. Trompeta and V. Markakis, Manufacturing Rev., 1, 11 (2014); https://doi.org/10.1051/mfreview/2014009
- A. Mittal, I. Roy and S. Gandhi, Magnetochemistry, 8, 107 (2022); https://doi.org/10.3390/magnetochemistry8090107
- S.G. Divakara and B. Mahesh, Results Eng., 21, 101702 (2024); https://doi.org/10.1016/j.rineng.2023.101702
- N. Maji and H.S. Dosanjh, Magnetochemistry, 9, 156 (2023); https://doi.org/10.3390/magnetochemistry9060156
- K.K. Kefeni, T.A.M. Msagati and B.B. Mamba, Mater. Sci. Eng. B, 215, 37 (2017); https://doi.org/10.1016/j.mseb.2016.11.002
- B. Issa, I.M. Obaidat, B.A. Albiss and Y. Haik, Int. J. Mol. Sci., 14, 21266 (2013); https://doi.org/10.3390/ijms141121266
- N.J. Mondal, R. Sonkar, B. Boro, M.P. Ghosh and D. Chowdhury, Nanoscale Adv., 5, 5460 (2023); https://doi.org/10.1039/D3NA00446E
- S.F. Mansour and M.A. Elkestawy, Ceram. Int., 37, 1175 (2011); https://doi.org/10.1016/j.ceramint.2010.11.038
- K. Poon and G. Singh, ChemNanoMat, 10, e202400168 (2024); https://doi.org/10.1002/cnma.202400168
- A.V. Trukhanov, D.I. Tishkevich, A.V. Timofeev, V.A. Astakhov, E.L. Trukhanova, A.A. Rotkovich, Yuan Yao, D.S. Klygach, T.I. Zubar, M.I. Sayyed, S.V. Trukhanov and V.G. Kostishin, Ceram. Int., 50, 21311 (2024); https://doi.org/10.1016/j.ceramint.2024.03.241
- T.N. Pham, T.Q. Huy and A.-T. Le, RSC Adv., 10, 31622 (2020); https://doi.org/10.1039/D0RA05133K
- N. Askarzadeh and H. Shokrollahi, Results Chem., 10, 101679 (2024); https://doi.org/10.1016/j.rechem.2024.101679
- R.S. Rajenimbalkar, V.J. Deshmukh, K.K. Patankar and S.B. Somvanshi, Sci. Rep., 14, 29547 (2024); https://doi.org/10.1038/s41598-024-81222-3
- E.E. Ateia, M.A. Ateia, M.G. Fayed, S.I. El-Hout, S.G. Mohamed and M.M. Arman, Appl. Phys. A, 128, 483 (2022); https://doi.org/10.1007/s00339-022-05622-w
- N. Jovic, B. Antic, G.F. Goya and V. Spasojevic, Curr. Nanosci., 8, 651 (2012); https://doi.org/10.2174/157341312802884391
- S. Aman, M.B. Tahir and N. Ahmad, J. Mater. Sci.: Mater. Electron., 32, 22440 (2021); https://doi.org/10.1007/s10854-021-06730-8
- J.A. Goudar, S.N. Thrinethra, S. Chapi, M.V. Murugendrappa, M.R. Saeb and M. Salami-Kalajahi, Adv. Energy Sustain. Res., 6, 2400271 (2025); https://doi.org/10.1002/aesr.202400271
- S. Rasheed, H.S. Aziz, R.A. Khan, A.M. Khan, A. Rahim, J. Nisar, S.M. Shah, F. Iqbal and A.R. Khan, Ceramics Int., 42, 3666 (2016); https://doi.org/10.1016/j.ceramint.2015.11.034
- M.K. Shobana, J. Phys. Chem. Solids, 73, 1040 (2012); https://doi.org/10.1016/j.jpcs.2012.03.009
- S.E. Shirsath, D. Wang, S.S. Jadhav, M.L. Mane and S. Li, in eds.: L. Klein, M. Aparicio and A. Jitianu, Ferrites obtained by Sol-Gel Method. Handbook of Sol-Gel Science and Technology. Springer, Cham (2018); https://doi.org/10.1007/978-3-319-19454-7_125-3
- Y. Cao, H. Qin, X. Niu and D. Jia, Ceram. Int., 42, 10697 (2016); https://doi.org/10.1016/j.ceramint.2016.03.184
- A.V. Vinogradov and V.V. Vinogradov, RSC Adv., 4, 45903 (2014); https://doi.org/10.1039/C4RA04454A
References
N. Baig, I. Kammakakam and W. Falath, Mater. Adv., 2, 1821 (2021); https://doi.org/10.1039/D0MA00807A
H.M. Saleh and A.I. Hassan, Sustainability, 15, 10891 (2023); https://doi.org/10.3390/su151410891
L. Pokrajac, A. Abbas, W. Chrzanowski, G.M. Dias, B.J. Eggleton, S. Maguire, E. Maine, T. Malloy, J. Nathwani, L. Nazar, A. Sips, J. Sone, A. van den Berg, P.S. Weiss and S. Mitra, ACS Nano, 15, 18608 (2021); https://doi.org/10.1021/acsnano.1c10919
C.A. Charitidis, P. Georgiou, M.A. Koklioti, A.-F. Trompeta and V. Markakis, Manufacturing Rev., 1, 11 (2014); https://doi.org/10.1051/mfreview/2014009
A. Mittal, I. Roy and S. Gandhi, Magnetochemistry, 8, 107 (2022); https://doi.org/10.3390/magnetochemistry8090107
S.G. Divakara and B. Mahesh, Results Eng., 21, 101702 (2024); https://doi.org/10.1016/j.rineng.2023.101702
N. Maji and H.S. Dosanjh, Magnetochemistry, 9, 156 (2023); https://doi.org/10.3390/magnetochemistry9060156
K.K. Kefeni, T.A.M. Msagati and B.B. Mamba, Mater. Sci. Eng. B, 215, 37 (2017); https://doi.org/10.1016/j.mseb.2016.11.002
B. Issa, I.M. Obaidat, B.A. Albiss and Y. Haik, Int. J. Mol. Sci., 14, 21266 (2013); https://doi.org/10.3390/ijms141121266
N.J. Mondal, R. Sonkar, B. Boro, M.P. Ghosh and D. Chowdhury, Nanoscale Adv., 5, 5460 (2023); https://doi.org/10.1039/D3NA00446E
S.F. Mansour and M.A. Elkestawy, Ceram. Int., 37, 1175 (2011); https://doi.org/10.1016/j.ceramint.2010.11.038
K. Poon and G. Singh, ChemNanoMat, 10, e202400168 (2024); https://doi.org/10.1002/cnma.202400168
A.V. Trukhanov, D.I. Tishkevich, A.V. Timofeev, V.A. Astakhov, E.L. Trukhanova, A.A. Rotkovich, Yuan Yao, D.S. Klygach, T.I. Zubar, M.I. Sayyed, S.V. Trukhanov and V.G. Kostishin, Ceram. Int., 50, 21311 (2024); https://doi.org/10.1016/j.ceramint.2024.03.241
T.N. Pham, T.Q. Huy and A.-T. Le, RSC Adv., 10, 31622 (2020); https://doi.org/10.1039/D0RA05133K
N. Askarzadeh and H. Shokrollahi, Results Chem., 10, 101679 (2024); https://doi.org/10.1016/j.rechem.2024.101679
R.S. Rajenimbalkar, V.J. Deshmukh, K.K. Patankar and S.B. Somvanshi, Sci. Rep., 14, 29547 (2024); https://doi.org/10.1038/s41598-024-81222-3
E.E. Ateia, M.A. Ateia, M.G. Fayed, S.I. El-Hout, S.G. Mohamed and M.M. Arman, Appl. Phys. A, 128, 483 (2022); https://doi.org/10.1007/s00339-022-05622-w
N. Jovic, B. Antic, G.F. Goya and V. Spasojevic, Curr. Nanosci., 8, 651 (2012); https://doi.org/10.2174/157341312802884391
S. Aman, M.B. Tahir and N. Ahmad, J. Mater. Sci.: Mater. Electron., 32, 22440 (2021); https://doi.org/10.1007/s10854-021-06730-8
J.A. Goudar, S.N. Thrinethra, S. Chapi, M.V. Murugendrappa, M.R. Saeb and M. Salami-Kalajahi, Adv. Energy Sustain. Res., 6, 2400271 (2025); https://doi.org/10.1002/aesr.202400271
S. Rasheed, H.S. Aziz, R.A. Khan, A.M. Khan, A. Rahim, J. Nisar, S.M. Shah, F. Iqbal and A.R. Khan, Ceramics Int., 42, 3666 (2016); https://doi.org/10.1016/j.ceramint.2015.11.034
M.K. Shobana, J. Phys. Chem. Solids, 73, 1040 (2012); https://doi.org/10.1016/j.jpcs.2012.03.009
S.E. Shirsath, D. Wang, S.S. Jadhav, M.L. Mane and S. Li, in eds.: L. Klein, M. Aparicio and A. Jitianu, Ferrites obtained by Sol-Gel Method. Handbook of Sol-Gel Science and Technology. Springer, Cham (2018); https://doi.org/10.1007/978-3-319-19454-7_125-3
Y. Cao, H. Qin, X. Niu and D. Jia, Ceram. Int., 42, 10697 (2016); https://doi.org/10.1016/j.ceramint.2016.03.184
A.V. Vinogradov and V.V. Vinogradov, RSC Adv., 4, 45903 (2014); https://doi.org/10.1039/C4RA04454A